SUPPLEMENTAL METHODS

Transgenic mouse systems.

All bitransgenic mice were conceived and raised on 100 µg doxycycline (Sigma) to suppress transgene expression during development as described21, 23, 25. At 8 wks of age, half of the littermates remained on doxycycline and half were switched to water and experiments were performed 8 wks later when the transcriptional effects of ∆FosB are maximal14, 23. Equivalent transgene expression is seen in the core and shell subregions of NAc in all three mouse lines21, 23, 25. Use of animals was approved by UT Southwestern’s IACUC (protocol 08930301-1).

AAV-mediated gene transfer.

Stereotaxic coordinates for AAV vector injections into the NAc were: anterior-posterior +1.5 mm, lateral ± 1.5 mm, and dorsoventral -4.4 mm at an angle of 10° from the midline (relative to Bregma). The core and shell subregions of NAc are affected equally by these injections.

Western blotting.

We used the following antisera for western blot analysis: Gαi\textsubscript{1} (1:1000), Gαi\textsubscript{2} (1:2000), Gβ (1:10,000), and Gs (1:2000), all provided by Suzanne Mumby (UT Southwestern Medical Center), RGS9-2 (1:2000) provided by Stephen Gold (UT Southwestern Medical Center), Gβ5 (1:10,000) provided by William Simonds (NIDDK),
Gq (1:2000, Chemicon), and spinophilin (1:10,000) provided by Patrick Allen (Yale University).

Opioid receptor binding assays.

NAc was dissected on ice, and membranes were prepared by homogenizing tissue in 50 mM Tri-HCl, pH 7.4, 3 mM MgCl₂ and 1 mM EGTA, centrifuging for 10 min (4°C) at 50,000 x g, discarding the supernatant, resuspending the pellet and repeating the centrifugation. Membranes were resuspended in 50 mM Tris-HCl, 100 mM NaCl, 3 mM MgCl₂ and 0.2 mM EGTA (assay buffer) and pretreated with adenosine deaminase as described (see references in Supplemental Information). Membranes (75-100 µg protein, pooled from 2-3 mice) were incubated for 90 min at 30°C in assay buffer with 2 nM [³H]naloxone, 0.5 nM unlabeled naltrindole, and 2 nM unlabeled Nor-BNI, which provides a specific measure of µ receptors. Membranes were incubated with [³H]DADLE or [³H]CTAP to provide a specific measure of δ or µ receptors, respectively. Nonspecific binding was determined with 10 µM unlabeled naltrexone. The incubation was terminated by vacuum filtration. Bound radioactivity was determined by liquid scintillation spectrophotometry at 45% efficiency for [³H]. See supplemental references for further details.

Chromatin immunoprecipitation assays.

Chromatin immunoprecipitation assays were performed exactly according to published methods (see Supplemental References). Briefly, punch dissections of NAc were treated with 1% formaldehyde for 15 min at room temperature to cross-link DNA
and its associated proteins, and then washed 5 times with cold PBS. After incubation with specific antisera, immunoprecipitations were accomplished by use of Protein A agarose beads in a salmon sperm DNA slurry. The immunoprecipitates were washed stringently and reverse cross-linked with NaCl at 65°C, the immunoprecipitated DNA was purified using phenol chloroform and ethanol precipitation, and quantified using real time PCR. The binding of ∆FosB to the dynorphin promoter was determined by measuring the amount of the dynorphin promoter pulled down in chromatin immunoprecipitates by use of real-time PCR (ABI Prism 7700, Applied Biosystems) using oligonucleotide pairs designed to amplify proximal (~100-200 bp long) promoter regions of dynorphin and of synaptotagmin (analyzed as a control). The oligonucleotides used were 5’- CGCTTCTCTGTGGCACTTC-3’ and 5’- TTGTCCCTGGCAGGCTTCTG-3’ for prodynorphin; 5’-TAGAACCTCTGCGGTCGT-3’ and 5’-TCATCTGGTAGAAGTGTCGAGGAGA-3’ for synaptophysin. Input and immunoprecipitated DNA were PCR amplified in triplicate in the presence of SYBR-Green (ABI). Ct values from each sample were obtained using the Sequence Detector 1.1 software. Relative quantification of amplified template was performed as described in detail in Supplemental References.

Statistical analysis.

For place preference, analgesia, and opiate withdrawal behavioral assays, we used two way ANOVAs and Bonferroni post hoc tests for within groups comparisons whenever analysis revealed a genotype affect. For receptor binding,
immunohistochemistry, western blotting, and chromatin immunoprecipitation assays, we used t-tests.