Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dynorphin A activates bradykinin receptors to maintain neuropathic pain

Abstract

Dynorphin A is an endogenous opioid peptide that produces non-opioid receptor-mediated neural excitation. Here we demonstrate that dynorphin induces calcium influx via voltage-sensitive calcium channels in sensory neurons by activating bradykinin receptors. This action of dynorphin at bradykinin receptors is distinct from the primary signaling pathway activated by bradykinin and underlies the hyperalgesia produced by pharmacological administration of dynorphin by the spinal route in rats and mice. Blockade of spinal B1 or B2 receptor also reverses persistent neuropathic pain but only when there is sustained elevation of endogenous spinal dynorphin, which is required for maintenance of neuropathic pain. These data reveal a mechanism for endogenous dynorphin to promote pain through its agonist action at bradykinin receptors and suggest new avenues for therapeutic intervention.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dynorphin A2–13 (dynA2–13) induces calcium influx in DRG and F-11 cells.
Figure 2: Inhibitory effect of VSCC blockers on dynorphin A2–13-induced [Ca2+]i in F-11 cells.
Figure 3: Inhibitory effect of B2 receptor–selective antagonist HOE 140 on dynorphin A2–13-induced [Ca2+]i in F-11 cells that express predominantly B2 receptors.
Figure 4: Heterologous expression of human B1 or human B2 receptors in F-11 cells that have spontaneously lost responsiveness to dynorphin A.
Figure 5: Effects of HOE 140 and DALBK on tactile hypersensitivity and thermal hyperalgesia induced by dynorphin A2–13.
Figure 6: Effects of intrathecal bradykinin receptor antagonists on the tactile and thermal hypersensitivities induced by L5–L6 SNL (n = 6–7).
Figure 7: Quantitative PCR analysis of bradykinin receptor, kininogen and prodynorphin transcripts in the DRG and spinal cord of sham control and L5–L6 SNL rats (n = 6).

Similar content being viewed by others

References

  1. Beaumont, A. & Hughes, J. Biology of opioid peptides. Annu. Rev. Pharmacol. Toxicol. 19, 245–267 (1979).

    Article  CAS  Google Scholar 

  2. Goldstein, A., Tachibana, S., Lowney, L.I., Hunkapiller, M. & Hood, L. Dynorphin-(1–13), an extraordinarily potent opioid peptide. Proc. Natl. Acad. Sci. USA 76, 6666–6670 (1979).

    Article  CAS  Google Scholar 

  3. Quirion, R. & Pilapil, C. Opioid receptor binding profile of [3H]dynorphin A-(1–8) in rat and guinea pig brain. Eur. J. Pharmacol. 99, 361–363 (1984).

    Article  CAS  Google Scholar 

  4. Chavkin, C., James, I.F. & Goldstein, A. Dynorphin is a specific endogenous ligand of the kappa opioid receptor. Science 215, 413–415 (1982).

    Article  CAS  Google Scholar 

  5. Corbett, A.D., Paterson, S.J., McKnight, A.T., Magnan, J. & Kosterlitz, H.W. Dynorphin and dynorphin are ligands for the kappa-subtype of opiate receptor. Nature 299, 79–81 (1982).

    Article  CAS  Google Scholar 

  6. Zhang, S. et al. Dynorphin A as a potential endogenous ligand for four members of the opioid receptor gene family. J. Pharmacol. Exp. Ther. 286, 136–141 (1998).

    CAS  PubMed  Google Scholar 

  7. Herman, B.H. & Goldstein, A. Antinociception and paralysis induced by intrathecal dynorphin A. J. Pharmacol. Exp. Ther. 232, 27–32 (1985).

    CAS  PubMed  Google Scholar 

  8. Walker, J.M., Moises, H.C., Coy, D.H., Baldrighi, G. & Akil, H. Nonopiate effects of dynorphin and des-Tyr-dynorphin. Science 218, 1136–1138 (1982).

    Article  CAS  Google Scholar 

  9. Faden, A.I. & Jacobs, T.P. Dynorphin-related peptides cause motor dysfunction in the rat through a non-opiate action. Br. J. Pharmacol. 81, 271–276 (1984).

    Article  CAS  Google Scholar 

  10. Stevens, C.W., Weinger, M.B. & Yaksh, T.L. Intrathecal dynorphins suppress hindlimb electromyographic activity in rats. Eur. J. Pharmacol. 138, 299–302 (1987).

    Article  CAS  Google Scholar 

  11. Vanderah, T.W. et al. Single intrathecal injections of dynorphin A or des-Tyr-dynorphins produce long-lasting allodynia in rats: blockade by MK-801 but not naloxone. Pain 68, 275–281 (1996).

    Article  CAS  Google Scholar 

  12. Koetzner, L., Hua, X.Y., Lai, J., Porreca, F. & Yaksh, T. Nonopioid actions of intrathecal dynorphin evoke spinal excitatory amino acid and prostaglandin E2 release mediated by cyclooxygenase-1 and -2. J. Neurosci. 24, 1451–1458 (2004).

    Article  CAS  Google Scholar 

  13. Skilling, S.R., Sun, X., Kurtz, H.J. & Larson, A.A. Selective potentiation of NMDA-induced activity and release of excitatory amino acids by dynorphin: possible roles in paralysis and neurotoxicity. Brain Res. 575, 272–278 (1992).

    Article  CAS  Google Scholar 

  14. Tang, Q., Lynch, R.M., Porreca, F. & Lai, J. Dynorphin A elicits an increase in intracellular calcium in cultured neurons via a non-opioid, non-NMDA mechanism. J. Neurophysiol. 83, 2610–2615 (2000).

    Article  CAS  Google Scholar 

  15. Hauser, K.F., Foldes, J.K. & Turbek, C.S. Dynorphin A (1–13) neurotoxicity in vitro: opioid and non-opioid mechanisms in mouse spinal cord neurons. Exp. Neurol. 160, 361–375 (1999).

    Article  CAS  Google Scholar 

  16. Ruda, M.A., Iadarola, M.J., Cohen, L.V. & Young, W.S., III . In situ hybridization histochemistry and immunocytochemistry reveal an increase in spinal dynorphin biosynthesis in a rat model of peripheral inflammation and hyperalgesia. Proc. Natl. Acad. Sci. USA 85, 622–626 (1988).

    Article  CAS  Google Scholar 

  17. Malan, T.P. et al. Extraterritorial neuropathic pain correlates with multisegmental elevation of spinal dynorphin in nerve-injured rats. Pain 86, 185–194 (2000).

    Article  CAS  Google Scholar 

  18. Schwei, M.J. et al. Neurochemical and cellular reorganization of the spinal cord in a murine model of bone cancer pain. J. Neurosci. 19, 10886–10897 (1999).

    Article  CAS  Google Scholar 

  19. Vanderah, T.W. et al. Dynorphin promotes abnormal pain and spinal opioid antinociceptive tolerance. J. Neurosci. 20, 7074–7079 (2000).

    Article  CAS  Google Scholar 

  20. Wang, Z. et al. Pronociceptive actions of dynorphin maintain chronic neuropathic pain. J. Neurosci. 21, 1779–1786 (2001).

    Article  CAS  Google Scholar 

  21. Platika, D., Boulos, M.H., Baizer, L. & Fishman, M.C. Neuronal traits of clonal cell lines derived by fusion of dorsal root ganglia neurons with neuroblastoma cells. Proc. Natl Acad. Sci. USA 82, 3499–3503 (1985).

    Article  CAS  Google Scholar 

  22. Francel, P.C. et al. Neurochemical characteristics of a novel dorsal root ganglion X neuroblastoma hybrid cell line, F-11. J. Neurochem. 48, 1624–1631 (1987).

    Article  CAS  Google Scholar 

  23. Fan, S.F., Shen, K.F., Scheideler, M.A. & Crain, S.M. F11 neuroblastoma x DRG neuron hybrid cells express inhibitory mu- and delta-opioid receptors which increase voltage-dependent K+ currents upon activation. Brain Res. 590, 329–333 (1992).

    Article  CAS  Google Scholar 

  24. Zanner, R., Hapfelmeier, G., Gratzl, M. & Prinz, C. Intracellular signal transduction during gastrin-induced histamine secretion in rat gastric ECL cells. Am. J. Physiol. Cell Physiol. 282, C374–C382 (2002).

    Article  CAS  Google Scholar 

  25. Simasko, S.M., Boyadjieva, N., De, A. & Sarkar, D.K. Effect of ethanol on calcium regulation in rat fetal hypothalamic cells in culture. Brain Res. 824, 89–96 (1999).

    Article  CAS  Google Scholar 

  26. Burgess, G.M., Mullaney, I., McNeill, M., Dunn, P.M. & Rang, H.P. Second messengers involved in the mechanism of action of bradykinin in sensory neurons in culture. J. Neurosci. 9, 3314–3325 (1989).

    Article  CAS  Google Scholar 

  27. Tsien, R.W., Lipscombe, D., Madison, D.V., Bley, K.R. & Fox, A.P. Multiple types of neuronal calcium channels and their selective modulation. Trends Neurosci. 11, 431–438 (1988).

    Article  CAS  Google Scholar 

  28. Davare, M.A., Dong, F., Rubin, C.S. & Hell, J.W. The A-kinase anchor protein MAP2B and cAMP-dependent protein kinase are associated with class C L-type calcium channels in neurons. J. Biol. Chem. 274, 30280–30287 (1999).

    Article  CAS  Google Scholar 

  29. Hell, J.W., Yokoyama, C.T., Breeze, L.J., Chavkin, C. & Catterall, W.A. Phosphorylation of presynaptic and postsynaptic calcium channels by cAMP-dependent protein kinase in hippocampal neurons. EMBO J. 14, 3036–3044 (1995).

    Article  CAS  Google Scholar 

  30. Wetzel, C.H., Spehr, M. & Hatt, H. Phosphorylation of voltage-gated ion channels in rat olfactory receptor neurons. Eur. J. Neurosci. 14, 1056–1064 (2001).

    Article  CAS  Google Scholar 

  31. Liebmann, C. et al. Dual bradykinin B2 receptor signalling in A431 human epidermoid carcinoma cells: activation of protein kinase C is counteracted by a GS-mediated stimulation of the cyclic AMP pathway. Biochem. J. 313, 109–118 (1996).

    Article  CAS  Google Scholar 

  32. Marceau, F., Hess, J.F. & Bachvarov, D.R. The B1 receptors for kinins. Pharmacol. Rev. 50, 357–386 (1998).

    CAS  PubMed  Google Scholar 

  33. Austin, C.E. et al. Stable expression of the human kinin B1 receptor in Chinese hamster ovary cells. Characterization of ligand binding and effector pathways. J. Biol. Chem. 272, 11420–11425 (1997).

    Article  CAS  Google Scholar 

  34. Vasko, M.R., Campbell, W.B. & Waite, K.J. Prostaglandin E2 enhances bradykinin-stimulated release of neuropeptides from rat sensory neurons in culture. J. Neurosci. 14, 4987–4997 (1994).

    Article  CAS  Google Scholar 

  35. Evans, A.R., Nicol, G.D. & Vasko, M.R. Differential regulation of evoked peptide release by voltage-sensitive calcium channels in rat sensory neurons. Brain Res. 712, 265–273 (1996).

    Article  CAS  Google Scholar 

  36. Linhart, O., Obreja, O. & Kress, M. The inflammatory mediators serotonin, prostaglandin E2 and bradykinin evoke calcium influx in rat sensory neurons. Neuroscience 118, 69–74 (2003).

    Article  CAS  Google Scholar 

  37. Falcone, R.C. et al. Characterization of bradykinin receptors in guinea pig gall bladder. J. Pharmacol. Exp. Ther. 266, 1291–1299 (1993).

    CAS  PubMed  Google Scholar 

  38. Pesquero, J.B. et al. Hypoalgesia and altered inflammatory responses in mice lacking kinin B1 receptors. Proc. Natl Acad. Sci. USA 97, 8140–8145 (2000).

    Article  CAS  Google Scholar 

  39. Banik, R.K., Kozaki, Y., Sato, J., Gera, L. & Mizumura, K. B2 receptor-mediated enhanced bradykinin sensitivity of rat cutaneous C-fiber nociceptors during persistent inflammation. J. Neurophysiol. 86, 2727–2735 (2001).

    Article  CAS  Google Scholar 

  40. Wotherspoon, G. & Winter, J. Bradykinin B1 receptor is constitutively expressed in the rat sensory nervous system. Neurosci. Lett. 294, 175–178 (2000).

    Article  CAS  Google Scholar 

  41. Fox, A. et al. Regulation and function of spinal and peripheral neuronal B1 bradykinin receptors in inflammatory mechanical hyperalgesia. Pain 104, 683–691 (2003).

    Article  CAS  Google Scholar 

  42. Burgess, S.E. et al. Time-dependent descending facilitation from the rostral ventromedial medulla maintains, but does not initiate, neuropathic pain. J. Neurosci. 22, 5129–5136 (2002).

    Article  CAS  Google Scholar 

  43. Kim, S.H. & Chung, J.M. An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat. Pain 50, 355–363 (1992).

    Article  CAS  Google Scholar 

  44. Gardell, L.R. et al. Sustained morphine exposure induces a spinal dynorphin-dependent enhancement of excitatory transmitter release from primary afferent fibers. J. Neurosci. 22, 6747–6755 (2002).

    Article  CAS  Google Scholar 

  45. Cloutier, F., de Sousa Buck, H., Ongali, B. & Couture, R. Pharmacologic and autoradiographic evidence for an up-regulation of kinin B(2) receptors in the spinal cord of spontaneously hypertensive rats. Br. J. Pharmacol. 135, 1641–1654 (2002).

    Article  CAS  Google Scholar 

  46. Botticelli, L.J., Cox, B.M. & Goldstein, A. Immunoreactive dynorphin in mammalian spinal cord and dorsal root ganglia. Proc. Natl Acad. Sci. USA 78, 7783–7786 (1981).

    Article  CAS  Google Scholar 

  47. Lai, J. et al. The cloned murine M1 muscarinic receptor is associated with the hydrolysis of phosphatidylinositols in transfected murine B82 cells. Life Sci. 42, 2489–2502 (1988).

    Article  CAS  Google Scholar 

  48. Yaksh, T.L. & Rudy, T.A. Chronic catheterization of the spinal subarachnoid space. Physiol. Behav. 17, 1031–1036 (1976).

    Article  CAS  Google Scholar 

  49. Chaplan, S.R., Bach, F.W., Pogrel, J.W., Chung, J.M. & Yaksh, T.L. Quantitative assessment of tactile allodynia in the rat paw. J. Neurosci. Methods 53, 55–63 (1994).

    Article  CAS  Google Scholar 

  50. Hargreaves, K., Dubner, R., Brown, F., Flores, C. & Joris, J. A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 32, 77–88 (1988).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the National Institute on Drug Abuse. The authors appreciate the technical assistance of Y. Kawamoto on DRG cultures and H. Badghisi on the PI hydrolysis assay.

Author information

Authors and Affiliations

Authors

Contributions

M.-C.L. conducted the ratiometric imaging, designed and executed the PCR analyses, performed the data analysis and prepared the figures. Q.C. conducted the surgeries and behavioral experiments and data analysis.

Corresponding author

Correspondence to Josephine Lai.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

F-11 cells exhibit characteristics of nociceptive C-fibers. (PDF 2126 kb)

Supplementary Fig. 2

Voltage-sensitive calcium channels (VSCCs) are expressed in F-11 cells. (PDF 5352 kb)

Supplementary Fig. 3

Dynorphin A(2-13) has very low affinity for the cloned opioid receptors. (PDF 2764 kb)

Supplementary Fig. 4

Heterologous expression of the human bradykinin B1 or B2 receptor in F-11 cells. (PDF 4479 kb)

Supplementary Fig. 5

HOE 140 blocks dynorphin A(2-13)-induced [Ca2+]i in transfected F-11 expressing the human B2 receptor. (PDF 2362 kb)

Supplementary Methods (PDF 21 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lai, J., Luo, MC., Chen, Q. et al. Dynorphin A activates bradykinin receptors to maintain neuropathic pain. Nat Neurosci 9, 1534–1540 (2006). https://doi.org/10.1038/nn1804

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1804

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing