Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Simple fall-off pattern of correlated neural activity in the developing lateral geniculate nucleus

Abstract

Activity-dependent models for cortical simple-cell receptive field development predict specific patterns of correlated neural activity within the visual pathway, such as a Mexican hat–shaped pattern of correlated activity in the lateral geniculate nucleus (LGN). However, such activity patterns have yet to be experimentally demonstrated. We performed multielectrode recordings in the LGN of immature awake ferrets and found simple fall-off–shaped, rather than Mexican hat–shaped, patterns of correlated activity. A weak surround in the LGN neuron's receptive field and the statistics of the input contributed to this pattern of correlated activity. Computer simulation of cortical receptive field development incorporating the experimentally observed activity patterns demonstrated that a simple-cell receptive field emerges when a newly devised 'split' constraint on synaptic growth is combined with Hebbian synaptic modification rules. Thus, given certain developmental constraints on synaptic plasticity, patterns of correlated activity within the LGN are compatible with Hebbian models of simple-cell receptive field development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Construction of LGN correlation functions.
Figure 2: Developmental changes in the spatial pattern of stimulus-evoked and spontaneous LGN neural activity in awake ferrets.
Figure 3: Weak surround in the immature LGN neuron's receptive field.
Figure 4: Simulation of visual cortical receptive field development under the correlation-based model, with or without the split constraint.

Similar content being viewed by others

References

  1. Shatz, C.J. Impulse activity and the patterning of connections during CNS development. Neuron 5, 745–756 (1990).

    Article  CAS  Google Scholar 

  2. Goodman, C.S. & Shatz, C.J. Developmental mechanisms that generate precise patterns of neural connectivity. Cell 72, 77–98 (1993).

    Article  Google Scholar 

  3. Katz, L.C. & Shatz, C.J. Synaptic activity and the construction of cortical circuits. Science 274, 1133–1138 (1996).

    Article  CAS  Google Scholar 

  4. Weliky, M. Correlated neural activity and visual cortical development. Neuron 27, 427–430 (2000).

    Article  CAS  Google Scholar 

  5. Hubel, D.H. & Wiesel, T.N. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J. Physiol. (Lond.) 160, 106–154 (1962).

    Article  CAS  Google Scholar 

  6. Chapman, B. & Stryker, M.P. Development of orientation selectivity in ferret visual cortex and effects of deprivation. J. Neurosci. 13, 5251–5262 (1993).

    Article  CAS  Google Scholar 

  7. Weliky, M. & Katz, L.C. Disruption of orientation tuning in visual cortex by artificially correlated neuronal activity. Nature 386, 680–685 (1997).

    Article  CAS  Google Scholar 

  8. Chapman, B. & Godecke, I. Cortical cell orientation selectivity fails to develop in the absence of ON–center retinal ganglion cell activity. J. Neurosci. 20, 1922–1930 (2000).

    Article  CAS  Google Scholar 

  9. Crair, M.C., Gillespie, D.C. & Stryker, M.P. The role of visual experience in the development of columns in cat visual cortex. Science 279, 566–570 (1998).

    Article  CAS  Google Scholar 

  10. White, L.E., Coppola, D.M. & Fitzpatrick, D. The contribution of sensory experience to the maturation of orientation selectivity in ferret visual cortex. Nature 411, 1049–1052 (2001).

    Article  CAS  Google Scholar 

  11. Hebb, D.O. The Organization of Behavior (Wiley, New York, 1949).

    Google Scholar 

  12. von der Malsburg, C. Self-organization of orientation sensitive cells in the striate cortex. Kybernetik 14, 85–100 (1973).

    Article  CAS  Google Scholar 

  13. Willshaw, D.J. & von der Malsburg, C. How patterned neural connections can be set up by self-organization. Proc. R. Soc. Lond. B 194, 431–445 (1976).

    Article  CAS  Google Scholar 

  14. Miller, K.D. A model for the development of simple cell receptive fields and the ordered arrangement of orientation columns through activity-dependent competition between ON- and OFF-center inputs. J. Neurosci. 14, 409–441 (1994).

    Article  CAS  Google Scholar 

  15. Price, D.J. & Morgan, J.E. Spatial properties of neurons in the lateral geniculate nucleus of the pigmented ferret. Exp. Brain Res. 68, 28–36 (1987).

    CAS  PubMed  Google Scholar 

  16. Tavazoie, S.F. & Reid, R.C. Diverse receptive fields in the lateral geniculate nucleus during thalamocortical development. Nat. Neurosci. 3, 608–616 (2000).

    Article  CAS  Google Scholar 

  17. Mastronarde, D.N. Correlated firing of retinal ganglion cells. Trends Neurosci. 12, 75–80 (1989).

    Article  CAS  Google Scholar 

  18. Weliky, M. & Katz, L.C. Correlational structure of spontaneous neuronal activity in the developing lateral geniculate nucleus in vivo. Science 285, 599–604 (1999).

    Article  CAS  Google Scholar 

  19. Chiu, C. & Weliky, M. Spontaneous activity in developing ferret visual cortex in vivo. J. Neurosci. 21, 8906–8914 (2001).

    Article  CAS  Google Scholar 

  20. Krug, K., Akerman, C.J. & Thompson, I.D. Responses of neurons in neonatal cortex and thalamus to patterned visual stimulation through the naturally closed lids. J. Neurophysiol. 85, 1436–1443 (2001).

    Article  CAS  Google Scholar 

  21. Akerman, C.J., Grubb, M.S. & Thompson, I.D. Spatial temporal properties of visual responses in the thalamus of the developing ferret. J. Neurosci. 24, 170–182 (2004).

    Article  CAS  Google Scholar 

  22. Chapman, B., Stryker, M.P. & Bonhoeffer, T. Development of orientation preference maps in ferret primary visual cortex. J. Neurosci. 16, 6443–6453 (1996).

    Article  CAS  Google Scholar 

  23. Issa, N.P., Trachtenberg, J.T., Chapman, B., Zahs, K.R. & Stryker, M.P. The critical period for ocular dominance plasticity in the ferret's visual cortex. J. Neurosci. 19, 6965–6978 (1999).

    Article  CAS  Google Scholar 

  24. Enroth-Cugell, C. & Robson, J.G. The contrast sensitivity of retinal ganglion cells of the cat. J. Physiol. (Lond.) 187, 517–552 (1966).

    Article  CAS  Google Scholar 

  25. So, Y.T. & Shapley, R. Spatial tuning of cells in and around lateral geniculate nucleus of the cat: X and Y relay cells and perigeniculate interneurons. J. Neurophysiol. 45, 1107–1120 (1981).

    Article  Google Scholar 

  26. Linsenmeier, R.A., Frishman, L.J., Jakiela, H.G. & Enroth-Cugell, C. Receptive field properties of X and Y cells in the cat retina derived from contrast sensitivity measurements. Vision Res. 22, 1173–1183 (1982).

    Article  CAS  Google Scholar 

  27. Field, D.J. Relations between the statistics of natural images and the response properties of cortical cells. J. Opt. Soc. Am. A 4, 2379–2394 (1987).

    Article  CAS  Google Scholar 

  28. Hubel, D.H. & Wiesel, T.N. Receptive fields of cells in striate cortex of very young, visually inexperienced kittens. J. Neurophysiol. 26, 994–1002 (1963).

    Article  CAS  Google Scholar 

  29. Albus, K. & Wolf, W. Early post-natal development of neural function in the kitten's visual cortex: a laminar analysis. J. Physiol. (Lond.) 348, 153–185 (1984).

    Article  CAS  Google Scholar 

  30. Miller, K.D. & Mackay, D.C. The role of constraints in Hebbian learning. Neural Comput. 6, 100–126 (1994).

    Article  Google Scholar 

  31. Miller, K.D. Synaptic economics: competition and cooperation in synaptic plasticity. Neuron 17, 371–374 (1996).

    Article  CAS  Google Scholar 

  32. Usrey, W.M., Sceniak, M.P. & Chapman, B. Receptive fields and response properties of neurons in layer 4 of ferret visual cortex. J. Neurophysiol. 89, 1003–1015 (2003).

    Article  Google Scholar 

  33. Daniels, J.D., Pettigrew, J.D. & Norman, J.L. Development of single-neuron response in kitten's lateral geniculate nucleus. J. Neurophysiol. 41, 1373–1393 (1978).

    Article  CAS  Google Scholar 

  34. Tootle, J.S. & Friedlander, M.J. Postnatal development of receptive field surround inhibition in kitten dorsal lateral geniculate nucleus. J. Neurophysiol. 56, 523–541 (1986).

    Article  CAS  Google Scholar 

  35. Cai, D., DeAngelis, G.C. & Freeman, R.D. Spatiotemporal receptive field organization in the lateral geniculate nucleus of cats and kittens. J. Neurophysiol. 78, 1045–1061 (1997).

    Article  CAS  Google Scholar 

  36. Dubin, M.W. & Cleland, B.G. Organization of visual inputs to interneurons of lateral geniculate nucleus of the cat. J. Neurophysiol. 40, 410–427 (1977).

    Article  CAS  Google Scholar 

  37. Akerman, C.J., Smyth, D. & Thompson, I.D. Visual experience before eye-opening and the development of the retinogeniculate pathway. Neuron 36, 869–879 (2002).

    Article  CAS  Google Scholar 

  38. Ringach, D.L. Haphazard wiring of simple receptive fields and orientation columns in visual cortex. J. Neurophysiol. 92, 468–476 (2004).

    Article  Google Scholar 

  39. Tanaka, S. Theory of self-organization of cortical maps: mathematical framework. Neural Netw. 3, 625–640 (1990).

    Article  Google Scholar 

  40. Miller, K.D., Keller, J.B. & Stryker, M.P. Ocular dominance column development: analysis and simulation. Science 245, 605–615 (1989).

    Article  CAS  Google Scholar 

  41. Bienenstock, E.L., Cooper, L.N. & Munro, P.W. Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J. Neurosci. 2, 32–48 (1982).

    Article  CAS  Google Scholar 

  42. Lee, A.B., Blais, B., Shouval, H.Z. & Cooper, L.N. Statistics of lateral geniculate nucleus (LGN) activity determine the segregation of ON/OFF subfields for simple cells in visual cortex. Proc. Natl. Acad. Sci. USA 97, 12875–12879 (2000).

    Article  CAS  Google Scholar 

  43. Elliott, T. & Shadbolt, N.R. Multiplicative synaptic normalization and a nonlinear Hebb rule underlie a neurotrophic model of competitive synaptic plasticity. Neural Comput. 14, 1311–1322 (2002).

    Article  CAS  Google Scholar 

  44. Fiser, J., Chiu, C. & Weliky, M. Small modulation of ongoing cortical dynamics by sensory input during natural vision. Nature 431, 573–578 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Institutes of Health (National Eye Institute). T.O. acknowledges the Japan Society for the Promotion of Science for their support. We thank S. Hussain for a critical reading of the manuscript and C. Chiu for surgical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomokazu Ohshiro.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

100 ms is an appropriate bin size for detecting negatively correlated activity between neurons with opposite center sign (ON versus OFF). (PDF 736 kb)

Supplementary Fig. 2

Strength of correlated activity (mean r ± s.d.) of each LGN pair plotted as a function of their receptive field separation. (PDF 939 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohshiro, T., Weliky, M. Simple fall-off pattern of correlated neural activity in the developing lateral geniculate nucleus. Nat Neurosci 9, 1541–1548 (2006). https://doi.org/10.1038/nn1799

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1799

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing