Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Focal adhesion kinase signaling at sites of integrin-mediated adhesion controls axon pathfinding

Abstract

Extracellular matrix (ECM) components regulate neurite outgrowth in tissue culture and in vivo. Live imaging of phosphotyrosine (PY) signals revealed that Xenopus laevis growth cones extending on permissive ECM substrata assemble adhesive point contacts containing enriched levels of tyrosine-phosphorylated proteins. Whereas focal adhesion kinase (FAK) signaling is dispensable for the assembly of focal adhesions in non-neuronal cells, FAK activity is required for the formation of growth cone point contacts. FAK-dependent point contacts promote rapid neurite outgrowth by stabilizing lamellipodial protrusions on permissive ECM substrata. Moreover, local FAK activity is required for ECM-dependent growth cone turning in vitro, suggesting that FAK may control axon pathfinding in vivo. Consistent with this possibility, proper growth and guidance of Rohon-Beard sensory neurons and spinal commissural interneurons requires FAK activity. These findings identify FAK as a key regulator of axon growth and guidance downstream of growth cone–ECM interactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PY-containing point contacts are regulated by ECM components.
Figure 2: Paxillin is tyrosine-phosphorylated within point contacts.
Figure 3: FAK promotes point contact tyrosine phosphorylation and growth cone motility.
Figure 4: FAK activity is required for point contact formation and stabilization of lamellipodial protrusions.
Figure 5: FAK promotes substratum-dependent growth cone turning.
Figure 6: Targeted labeling of dorsal Xenopus neural tube.
Figure 7: Outgrowth of Rohon-Beard peripheral processes is impaired by loss of FAK signaling.
Figure 8: FAK activity is required for ventral midline crossing of commissural interneurons in the spinal cord.

Similar content being viewed by others

References

  1. Roberts, A. & Taylor, J.S. A scanning electron microscope study of the development of a peripheral sensory neurite network. J. Embryol. Exp. Morphol. 69, 237–250 (1982).

    CAS  PubMed  Google Scholar 

  2. Easter, S.S., Jr., Bratton, B. & Scherer, S.S. Growth-related order of the retinal fiber layer in goldfish. J. Neurosci. 4, 2173–2190 (1984).

    Article  Google Scholar 

  3. Anderson, H. & Tucker, R.P. Pioneer neurones use basal lamina as a substratum for outgrowth in the embryonic grasshopper limb. Development 104, 601–608 (1988).

    CAS  PubMed  Google Scholar 

  4. Ide, C., Tohyama, K., Yokota, R., Nitatori, T. & Onodera, S. Schwann cell basal lamina and nerve regeneration. Brain Res. 288, 61–75 (1983).

    Article  CAS  Google Scholar 

  5. Scherer, S.S. & Easter, S.S., Jr. Degenerative and regenerative changes in the trochlear nerve of goldfish. J. Neurocytol. 13, 519–565 (1984).

    Article  CAS  Google Scholar 

  6. Yaginuma, H., Homma, S., Kunzi, R. & Oppenheim, R.W. Pathfinding by growth cones of commissural interneurons in the chick embryo spinal cord: a light and electron microscopic study. J. Comp. Neurol. 304, 78–102 (1991).

    Article  CAS  Google Scholar 

  7. Bernhardt, R.R. Ipsi- and contralateral commissural growth cones react differently to the cellular environment of the ventral zebrafish spinal cord. J. Comp. Neurol. 350, 122–132 (1994).

    Article  CAS  Google Scholar 

  8. Hoang, B. & Chiba, A. Genetic analysis on the role of integrin during axon guidance in Drosophila. J. Neurosci. 18, 7847–7855 (1998).

    Article  CAS  Google Scholar 

  9. Bonner, J. & O'Connor, T.P. The permissive cue laminin is essential for growth cone turning in vivo. J. Neurosci. 21, 9782–9791 (2001).

    Article  CAS  Google Scholar 

  10. Paulus, J.D. & Halloran, M.C. Zebrafish bashful/laminin-alpha1 mutants exhibit multiple axon guidance defects. Dev. Dyn. 235, 213–224 (2006).

    Article  CAS  Google Scholar 

  11. Kleitman, N. & Johnson, M.I. Rapid growth cone translocation on laminin is supported by lamellipodial not filopodial structures. Cell Motil. Cytoskeleton 13, 288–300 (1989).

    Article  CAS  Google Scholar 

  12. Zacharias, U., Leuschner, R., Norenberg, U. & Rathjen, F.G. Tenascin-R induces actin-rich microprocesses and branches along neurite shafts. Mol. Cell. Neurosci. 21, 626–633 (2002).

    Article  CAS  Google Scholar 

  13. Geiger, B., Bershadsky, A., Pankov, R. & Yamada, K.M. Transmembrane crosstalk between the extracellular matrix–cytoskeleton crosstalk. Nat. Rev. Mol. Cell Biol. 2, 793–805 (2001).

    Article  CAS  Google Scholar 

  14. Guan, J.L., Trevithick, J.E. & Hynes, R.O. Fibronectin/integrin interaction induces tyrosine phosphorylation of a 120-kDa protein. Cell Regul. 2, 951–964 (1991).

    Article  CAS  Google Scholar 

  15. Kornberg, L., Earp, H.S., Parsons, J.T., Schaller, M. & Juliano, R.L. Cell adhesion or integrin clustering increases phosphorylation of a focal adhesion-associated tyrosine kinase. J. Biol. Chem. 267, 23439–23442 (1992).

    CAS  PubMed  Google Scholar 

  16. Ilic, D. et al. Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature 377, 539–544 (1995).

    Article  CAS  Google Scholar 

  17. Volberg, T., Romer, L., Zamir, E. & Geiger, B. pp60(c-src) and related tyrosine kinases: a role in the assembly and reorganization of matrix adhesions. J. Cell Sci. 114, 2279–2289 (2001).

    CAS  PubMed  Google Scholar 

  18. Gomez, T.M., Roche, F.K. & Letourneau, P.C. Chick sensory neuronal growth cones distinguish fibronectin from laminin by making substratum contacts that resemble focal contacts. J. Neurobiol. 29, 18–34 (1996).

    Article  CAS  Google Scholar 

  19. Wu, D.Y. & Goldberg, D.J. Regulated tyrosine phosphorylation at the tips of growth cone filopodia. J. Cell Biol. 123, 653–664 (1993).

    Article  CAS  Google Scholar 

  20. Robles, E., Woo, S. & Gomez, T.M. Src-dependent tyrosine phosphorylation at the tips of growth cone filopodia promotes extension. J. Neurosci. 25, 7669–7681 (2005).

    Article  CAS  Google Scholar 

  21. Krotoski, D. & Bronner-Fraser, M. Distribution of integrins and their ligands in the trunk of Xenopus laevis during neural crest cell migration. J. Exp. Zool. 253, 139–150 (1990).

    Article  CAS  Google Scholar 

  22. Somasekhar, T. & Nordlander, R.H. Differential distributions of HNK-1 and tenascin immunoreactivity during innervation of myotomal muscle in Xenopus. Brain Res. Dev. Brain Res. 88, 53–67 (1995).

    Article  CAS  Google Scholar 

  23. Mitra, S.K., Hanson, D.A. & Schlaepfer, D.D. Focal adhesion kinase: in command and control of cell motility. Nat. Rev. Mol. Cell Biol. 6, 56–68 (2005).

    Article  CAS  Google Scholar 

  24. Hens, M.D. & DeSimone, D.W. Molecular analysis and developmental expression of the focal adhesion kinase pp125FAK in Xenopus laevis. Dev. Biol. 170, 274–288 (1995).

    Article  CAS  Google Scholar 

  25. Calalb, M.B., Polte, T.R. & Hanks, S.K. Tyrosine phosphorylation of focal adhesion kinase at sites in the catalytic domain regulates kinase activity: a role for Src family kinases. Mol. Cell. Biol. 15, 954–963 (1995).

    Article  CAS  Google Scholar 

  26. Schaller, M.D., Borgman, C.A. & Parsons, J.T. Autonomous expression of a noncatalytic domain of the focal adhesion-associated protein tyrosine kinase pp125FAK. Mol. Cell. Biol. 13, 785–791 (1993).

    Article  CAS  Google Scholar 

  27. Galbraith, C.G., Yamada, K.M. & Sheetz, M.P. The relationship between force and focal complex development. J. Cell Biol. 159, 695–705 (2002).

    Article  CAS  Google Scholar 

  28. Mitchison, T. & Kirschner, M. Cytoskeletal dynamics and nerve growth. Neuron 1, 761–772 (1988).

    Article  CAS  Google Scholar 

  29. Suter, D.M. & Forscher, P. Substrate-cytoskeletal coupling as a mechanism for the regulation of growth cone motility and guidance. J. Neurobiol. 44, 97–113 (2000).

    Article  CAS  Google Scholar 

  30. Taylor, J.S. & Roberts, A. The early development of the primary sensory neurones in an amphibian embryo: a scanning electron microscope study. J. Embryol. Exp. Morphol. 75, 49–66 (1983).

    CAS  PubMed  Google Scholar 

  31. Hirose, G. & Jacobson, M. Clonal organization of the central nervous system of the frog. I. Clones stemming from individual blastomeres of the 16-cell and earlier stages. Dev. Biol. 71, 191–202 (1979).

    Article  CAS  Google Scholar 

  32. Inoue, A., Takahashi, M., Hatta, K., Hotta, Y. & Okamoto, H. Developmental regulation of islet-1 mRNA expression during neuronal differentiation in embryonic zebrafish. Dev. Dyn. 199, 1–11 (1994).

    Article  CAS  Google Scholar 

  33. Jacobson, M. Rohon-Beard neuron origin from blastomeres of the 16-cell frog embryo. J. Neurosci. 1, 918–922 (1981).

    Article  CAS  Google Scholar 

  34. Liu, Y. & Halloran, M.C. Central and peripheral axon branches from one neuron are guided differentially by Semaphorin3D and transient axonal glycoprotein-1. J. Neurosci. 25, 10556–10563 (2005).

    Article  CAS  Google Scholar 

  35. Somasekhar, T. & Nordlander, R.H. Selective early innervation of a subset of epidermal cells in Xenopus may be mediated by chondroitin sulfate proteoglycans. Brain Res. Dev. Brain Res. 99, 208–215 (1997).

    Article  CAS  Google Scholar 

  36. Ruest, P.J., Roy, S., Shi, E., Mernaugh, R.L. & Hanks, S.K. Phosphospecific antibodies reveal focal adhesion kinase activation loop phosphorylation in nascent and mature focal adhesions and requirement for the autophosphorylation site. Cell Growth Differ. 11, 41–48 (2000).

    CAS  PubMed  Google Scholar 

  37. Sieg, D.J. et al. Pyk2 and Src-family protein-tyrosine kinases compensate for the loss of FAK in fibronectin-stimulated signaling events but Pyk2 does not fully function to enhance FAK- cell migration. EMBO J. 17, 5933–5947 (1998).

    Article  CAS  Google Scholar 

  38. Menegon, A. et al. FAK+ and PYK2/CAKbeta, two related tyrosine kinases highly expressed in the central nervous system: similarities and differences in the expression pattern. Eur. J. Neurosci. 11, 3777–3788 (1999).

    Article  CAS  Google Scholar 

  39. Suter, D.M. & Forscher, P. Transmission of growth cone traction force through apCAM-cytoskeletal linkages is regulated by Src family tyrosine kinase activity. J. Cell Biol. 155, 427–438 (2001).

    Article  CAS  Google Scholar 

  40. Clarke, J.D., Holder, N., Soffe, S.R. & Storm-Mathisen, J. Neuroanatomical and functional analysis of neural tube formation in notochordless Xenopus embryos; laterality of the ventral spinal cord is lost. Development 112, 499–516 (1991).

    CAS  PubMed  Google Scholar 

  41. Matise, M.P., Lustig, M., Sakurai, T., Grumet, M. & Joyner, A.L. Ventral midline cells are required for the local control of commissural axon guidance in the mouse spinal cord. Development 126, 3649–3659 (1999).

    CAS  PubMed  Google Scholar 

  42. Brankatschk, M. & Dickson, B.J. Netrins guide Drosophila commissural axons at short range. Nat. Neurosci. 9, 188–194 (2006).

    Article  CAS  Google Scholar 

  43. Ren, X.R. et al. Focal adhesion kinase in netrin-1 signaling. Nat. Neurosci. 7, 1204–1212 (2004).

    Article  CAS  Google Scholar 

  44. Li, W. et al. Activation of FAK and Src are receptor-proximal events required for netrin signaling. Nat. Neurosci. 7, 1213–1221 (2004).

    Article  CAS  Google Scholar 

  45. Liu, G. et al. Netrin requires focal adhesion kinase and Src family kinases for axon outgrowth and attraction. Nat. Neurosci. 7, 1222–1232 (2004).

    Article  CAS  Google Scholar 

  46. Gomez, T.M., Harrigan, D., Henley, J. & Robles, E. Working with Xenopus spinal neurons in live cell culture. Methods Cell Biol. 71, 129–156 (2003).

    Article  Google Scholar 

  47. Gomez, T.M., Robles, E., Poo, M. & Spitzer, N.C. Filopodial calcium transients promote substrate-dependent growth cone turning. Science 291, 1983–1987 (2001).

    Article  CAS  Google Scholar 

  48. Moon, M.-S. & Gomez, T.M. Adjacent pioneer commissural interneuron growth cones switch from contact avoidance to axon fasciculation after midline crossing. Dev. Biol. 288, 474–486 (2005).

    Article  CAS  Google Scholar 

  49. Robles, E., Huttenlocher, A. & Gomez, T.M. Filopodial calcium transients regulate growth cone motility and guidance through local activation of calpain. Neuron 38, 597–609 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Halloran and members of the Gomez lab for comments on the manuscript. This work was supported by grant NS41564 from the US National Institutes of Health (to T.M.G.) and by a National Science Foundation predoctoral fellowship (to E.R.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy M Gomez.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

FRNK expression and FAKmo loading impair FAK activity and reduce PY levels at the growth cone. (PDF 1504 kb)

Supplementary Video 1

Dual-colored image sequence of a growth cone on LN expressing DsRed (red) and GFP-dSH2 (green). Note the robust GFP-dSH2 enrichment within stable point contacts (indicated by yellow arrowheads) and at the tips of motile filopodia. Time lapse, 30X. (MOV 5671 kb)

Supplementary Video 2

Fluorescence image sequence of a GFP-FRNK expressing Xenopus spinal neuron growth cone on LN. Note long, stable filopodia and dynamic, unstable lamellipodial protrusions. Time lapse, 60X. (MOV 4710 kb)

Supplementary Video 3

Fluorescence image sequence of a GFP-expressing Xenopus spinal neuron growth cone on LN (blue) at an interface with substratum-bound TN. Note that many transient lamellipodial protrusions extend onto the TN region but are rapidly withdrawn, while lamellipodia extending onto the LN region are stabilized and become the new leading edge. At t=610s this growth cone was fixed and subsequently stained for phospho-FAK. Note presence of phospho-FAK puncta only within lamellipodia on LN (arrowheads). Time lapse, 60x. (MOV 7411 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robles, E., Gomez, T. Focal adhesion kinase signaling at sites of integrin-mediated adhesion controls axon pathfinding. Nat Neurosci 9, 1274–1283 (2006). https://doi.org/10.1038/nn1762

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1762

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing