Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

What developmental disorders can tell us about the nature and origins of language

Abstract

Few areas in the cognitive sciences evoke more controversy than language evolution, due in part to the difficulty in gathering relevant empirical data. The study of developmental disorders is well placed to provide important new clues, but has been hampered by a lack of consensus on the aims and interpretation of the research project. We suggest that the application of the Darwinian principle of 'descent with modification' can help to reconcile much apparently inconsistent data. We close by illustrating how systematic analyses within and between disorders, suitably informed by evolutionary theory—and ideally facilitated by the creation of an open-access database—could provide new insights into language evolution.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The relation between language and cognition under three evolutionary scenarios.

References

  1. Gentner, T.Q., Fenn, K.M., Margoliash, D. & Nusbaum, H.C. Recursive syntactic pattern learning by songbirds. Nature 440, 1204–1207 (2006).

    Article  CAS  Google Scholar 

  2. Marcus, G.F. Language: startling starlings. Nature 440, 1117–1118 (2006).

    Article  CAS  Google Scholar 

  3. Arnold, K. & Zuberbuhler, K. Language evolution: semantic combinations in primate calls. Nature 441, 303 (2006).

    Article  CAS  Google Scholar 

  4. Hauser, M.D., Chomsky, N. & Fitch, W.T. The faculty of language: what is it, who has it, and how did it evolve? Science 298, 1569–1579 (2002).

    Article  CAS  Google Scholar 

  5. Hill, E.L. Non-specific nature of specific language impairment: a review of the literature with regard to concomitant motor impairments. Int. J. Lang. Commun. Disord. 36, 149–171 (2001).

    Article  CAS  Google Scholar 

  6. Kovas, Y. & Plomin, R. Generalist genes: implications for the cognitive sciences. Trends Cogn. Sci. 10, 198–203 (2006).

    Article  Google Scholar 

  7. van der Lely, H.K., Rosen, S. & McClelland, A. Evidence for a grammar-specific deficit in children. Curr. Biol. 8, 1253–1258 (1998).

    Article  CAS  Google Scholar 

  8. Bellugi, U., Lichtenberger, L., Jones, W., Lai, Z. & St. George, M.I. The neurocognitive profile of Williams syndrome: a complex pattern of strengths and weaknesses. J. Cogn. Neurosci. 12 (suppl. 1), 7–29 (2000).

    Article  Google Scholar 

  9. Mervis, C.B., Morris, C.A., Bertrand, J. & Robinson, B.F. Williams syndrome, findings from an integrated program of research. in Neurodevelopmental Disorders (ed. Tager-Flusberg, H.) Ch. 4, 65–110 (MIT Press, Cambridge, Massachusetts, 1999).

    Google Scholar 

  10. Lai, C.S., Fisher, S.E., Hurst, J.A., Vargha-Khadem, F. & Monaco, A.P. A forkhead-domain gene is mutated in a severe speech and language disorder. Nature 413, 519–523 (2001).

    Article  CAS  Google Scholar 

  11. Gopnik, M. & Crago, M.B. Familial aggregation of a developmental language disorder. Cognition 39, 1–50 (1991).

    Article  CAS  Google Scholar 

  12. Vargha-Khadem, F. et al. Neural basis of an inherited speech and language disorder. Proc. Natl. Acad. Sci. USA 95, 12695–12700 (1998).

    Article  CAS  Google Scholar 

  13. Vargha-Khadem, F., Watkins, K., Alcock, K., Fletcher, P. & Passingham, R. Praxic and nonverbal cognitive deficits in a large family with a genetically transmitted speech and language disorder. Proc. Natl. Acad. Sci. USA 92, 930–933 (1995).

    Article  CAS  Google Scholar 

  14. Lieberman, P. The pied piper of Cambridge. The Linguistic Review 22, 289–301 (2005).

    Article  Google Scholar 

  15. Fitch, W.T., Hauser, M.D. & Chomsky, N. The evolution of the language faculty: clarifications and implications. Cognition 97, 179–210 (2005).

    Article  Google Scholar 

  16. Pinker, S. & Jackendoff, R. The faculty of language: what's special about it? Cognition 95, 201–236 (2005).

    Article  Google Scholar 

  17. Enard, W. et al. Molecular evolution of FOXP2, a gene involved in speech and language. Nature 418, 869–872 (2002).

    Article  CAS  Google Scholar 

  18. Teramitsu, I., Kudo, L.C., London, S.E., Geschwind, D.H. & White, S.A. Parallel FoxP1 and FoxP2 expression in songbird and human brain predicts functional interaction. J. Neurosci. 24, 3152–3163 (2004).

    Article  CAS  Google Scholar 

  19. Fisher, S.E. & Marcus, G.F. The eloquent ape: genes, brains and the evolution of language. Nat. Rev. Genet. 7, 9–20 (2006).

    Article  CAS  Google Scholar 

  20. Cosmides, L. & Tooby, J. Origins of domain specificity: the evolutioin of functional organization. in Mapping the Mind: Domain Specificity in Cognition and Culture (eds. Hirschfeld, L.A. & Gelman, S.A.) Ch. 4, 85–116 (Cambridge Univ. Press, Cambridge, UK, 1994).

    Chapter  Google Scholar 

  21. Plomin, R. & Kovas, Y. Generalist genes and learning disabilities. Psychol. Bull. 131, 592–617 (2005).

    Article  Google Scholar 

  22. Marcus, G.F. The Birth of the Mind: How a Tiny Number of Genes Creates the Complexities of Human Thought (Basic Books, New York, 2004).

    Google Scholar 

  23. Marcus, G.F. & Rabagliati, H. Genes and domain-specificity. Trends Cogn. Sci., published online 8 August 2006 (doi:10.1016/j.tics.2006.07.003).

  24. Margulies, E.H., Kardia, S.L. & Innis, J.W. A comparative molecular analysis of developing mouse forelimbs and hindlimbs using serial analysis of gene expression (SAGE). Genome Res. 11, 1686–1698 (2001).

    Article  CAS  Google Scholar 

  25. Marcus, G.F. Cognitive architecture and descent with modification. Cognition 101, 43–65 (2206).

    Google Scholar 

  26. Bloom, P. How Children Learn the Meanings of Words (MIT Press, Cambridge, Massachusetts, 2000).

    Book  Google Scholar 

  27. Tomasello, M. The Cultural Origins of Human Cognition (Harvard Univ. Press, Cambridge, Massachusetts, 1999).

    Google Scholar 

  28. Baron-Cohen, S., Leslie, A.M. & Frith, U. Does the autistic child have a “theory of mind”? Cognition 21, 37–46 (1985).

    Article  CAS  Google Scholar 

  29. Baron-Cohen, S., Baldwin, D.A. & Crowson, M. Do children with autism use the speaker's direction of gaze strategy to crack the code of language? Child Dev. 68, 48–57 (1997).

    Article  CAS  Google Scholar 

  30. Preissler, M.A. & Carey, S. The role of inferences about referential intent in word learning: evidence from autism. Cognition 97, B13–B23 (2005).

    Article  Google Scholar 

  31. Halberda, J. The development of a word-learning strategy. Cognition 87, B23–B34 (2003).

    Article  Google Scholar 

  32. Golinkoff, R.M., Mervis, C.B. & Hirsh-Pasek, K. Early object labels: the case for a developmental lexical principles framework. J. Child Lang. 21, 125–155 (1994).

    CAS  PubMed  Google Scholar 

  33. Pepperberg, I.M. & Wilcox, S.E. Evidence for a form of mutual exclusivity during label acquisition by grey parrots (Psittacus erithacus)? J. Comp. Psychol. 114, 219–231 (2000).

    Article  CAS  Google Scholar 

  34. Seyfarth, R.M., Cheney, D.L. & Bergman, T.J. Primate social cognition and the origins of language. Trends Cogn. Sci. 9, 264–266 (2005).

    Article  Google Scholar 

  35. Abbeduto, L. et al. Receptive language skills of adolescents and young adults with down or fragile X syndrome. Am. J. Ment. Retard. 108, 149–160 (2003).

    Article  Google Scholar 

  36. Hagerman, R.J. Fragile X syndrome. in Neurodevelopmental Disorders Ch. 2, 61–132 (ed. J.Hagerman, R.) (Oxford Univ. Press, Oxford 1999).

    Google Scholar 

  37. Cornish, K., Sudhalter, V. & Turk, J. Attention and language in fragile X. Ment. Retard. Dev. Disabil. Res. Rev. 10, 11–16 (2004).

    Article  Google Scholar 

  38. Levy, Y., Gottesman, R., Borochowitz, Z., Frydman, M. & Sagi, M. Language in boys with fragile X syndrome. J. Child Lang. 33, 125–144 (2006).

    Article  Google Scholar 

  39. Nadel, L. Down syndrome in cognitive neuroscience perspective. in Neurodevelopmental Disorders (ed. Tager-Flusberg, H.) Ch. 9, 197–222 (MIT Press, Cambridge, Massachusetts, 1999).

    Google Scholar 

  40. Rondal, J. Exceptional Language Development in Down Syndrome: Implications for the Cognition Language Relationship (Cambridge Univ. Press., New York, 1995).

    Book  Google Scholar 

  41. Jarrold, C., Baddeley, A.D. & Hewes, A.K. Verbal and nonverbal abilities in the Williams syndrome phenotype: evidence for diverging developmental trajectories. J. Child Psychol. Psychiatry 39, 511–523 (1998).

    Article  CAS  Google Scholar 

  42. Rice, M.L., Warren, S.F. & Betz, S.K. Language symptoms of developmental language disorders: an overview of autism, Down syndrome, fragile X specific language disorder and Williams syndrome. Applied Psycholinguistics 26, 7–28 (2005).

    Google Scholar 

  43. Rosin, M.M., Swift, E., Bless, D. & Vetter, D.K. Communication profiles of adolescents with Down syndrome. J. Childhood Commun. Disord. 12, 49–64 (1988).

    Article  Google Scholar 

  44. Cornish, K.M., Munir, F. & Cross, G. Spatial cognition in males with Fragile-X syndrome: evidence for a neuropsychological phenotype. Cortex 35, 263–271 (1999).

    Article  CAS  Google Scholar 

  45. Rice, M.L., Wexler, K. & Cleave, P.L. Specific language impairment as a period of extended optional infinitive. J. Speech Hear. Res. 38, 850–863 (1995).

    Article  CAS  Google Scholar 

  46. Bellugi, U., Bihrle, A., Jernigan, T., Trauner, D. & Doherty, S. Neuropsychological, neurological, and neuroanatomical profile of Williams syndrome. Am. J. Med. Genet. Suppl. 6, 115–125 (1990).

    CAS  PubMed  Google Scholar 

  47. Thomas, M. & Karmiloff-Smith, A. Are developmental disorders like cases of adult brain damage? Implications from connectionist modelling. Behav. Brain Sci. 25, 727–750; discussion 750–787 (2002).

    PubMed  Google Scholar 

  48. Tallal, P., Miller, S. & Fitch, R.H. Neurobiological basis of speech: a case for the preeminence of temporal processing. Ann. NY Acad. Sci. 682, 27–47 (1993).

    Article  CAS  Google Scholar 

  49. Laws, G. & Bishop, D.V. Verbal deficits in Down's syndrome and specific language impairment: a comparison. Int. J. Lang. Commun. Disord. 39, 423–451 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

We thank S. Fisher and A. Vouloumanos for helpful comments on the manuscript. This work was supported by grants from the US National Institutes of Health (HD37059 to G.M.) and the Human Frontier Science Program (to G.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary Marcus.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marcus, G., Rabagliati, H. What developmental disorders can tell us about the nature and origins of language. Nat Neurosci 9, 1226–1229 (2006). https://doi.org/10.1038/nn1766

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1766

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing