Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

NGL family PSD-95–interacting adhesion molecules regulate excitatory synapse formation

Abstract

Synaptic cell adhesion molecules (CAMs) regulate synapse formation through their trans-synaptic and heterophilic adhesion. Here we show that postsynaptic netrin-G ligand (NGL) CAMs associate with netrin-G CAMs in an isoform-specific manner and, through their cytosolic tail, with the abundant postsynaptic scaffold postsynaptic density–95 (PSD-95). Overexpression of NGL-2 in cultured rat neurons increased the number of PSD-95–positive dendritic protrusions. NGL-2 located on heterologous cells or beads induced functional presynaptic differentiation in contacting neurites. Direct aggregation of NGL-2 on the surface membrane of dendrites induced the clustering of excitatory postsynaptic proteins. Competitive inhibition by soluble NGL-2 reduced the number of excitatory synapses. NGL-2 knockdown reduced excitatory, but not inhibitory, synapse numbers and currents. These results suggest that NGL regulates the formation of excitatory synapses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: NGL interacts with PSD-95 through its C terminus and with netrin-G CAMs through its ectodomain in an isoform-specific manner.
Figure 2: NGL localizes to the postsynaptic side of excitatory synapses.
Figure 3: Overexpression of NGL-2 increases the number of PSD-95–positive dendritic protrusions through both PSD-95–dependent and PSD-95–independent mechanisms.
Figure 4: NGL-2 expression in heterologous cells induces functional presynaptic differentiation in contacting neurites.
Figure 5: Beads bearing the ectodomain of NGL-2 induce functional excitatory presynaptic differentiation in contacting neurites.
Figure 6: Direct aggregation of NGL-2 on the dendritic surface induces clustering of excitatory postsynaptic proteins.
Figure 7: Soluble NGL-2 fusion proteins reduce the number of excitatory synapses.
Figure 8: Knockdown of NGL-2 by siRNA leads to morphological and functional loss of excitatory, but not inhibitory, synapses.

Similar content being viewed by others

References

  1. Li, Z. & Sheng, M. Some assembly required: the development of neuronal synapses. Nat. Rev. Mol. Cell Biol. 4, 833–841 (2003).

    Article  CAS  Google Scholar 

  2. Waites, C.L., Craig, A.M. & Garner, C.C. Mechanisms of vertebrate synaptogenesis. Annu. Rev. Neurosci. 28, 251–274 (2005).

    Article  CAS  Google Scholar 

  3. Washbourne, P. et al. Cell adhesion molecules in synapse formation. J. Neurosci. 24, 9244–9249 (2004).

    Article  CAS  Google Scholar 

  4. Yamagata, M., Sanes, J.R. & Weiner, J.A. Synaptic adhesion molecules. Curr. Opin. Cell Biol. 15, 621–632 (2003).

    Article  CAS  Google Scholar 

  5. Levinson, J.N. & El-Husseini, A. Building excitatory and inhibitory synapses: balancing neuroligin partnerships. Neuron 48, 171–174 (2005).

    Article  CAS  Google Scholar 

  6. Craig, A.M., Graf, E.R. & Linhoff, M.W. How to build a central synapse: clues from cell culture. Trends Neurosci. 29, 8–20 (2006).

    Article  CAS  Google Scholar 

  7. Dean, C. & Dresbach, T. Neuroligins and neurexins: linking cell adhesion, synapse formation and cognitive function. Trends Neurosci. 29, 21–29 (2006).

    Article  CAS  Google Scholar 

  8. Akins, M.R. & Biederer, T. Cell-cell interactions in synaptogenesis. Curr. Opin. Neurobiol. 16, 83–89 (2006).

    Article  CAS  Google Scholar 

  9. Biederer, T. et al. SynCAM, a synaptic adhesion molecule that drives synapse assembly. Science 297, 1525–1531 (2002).

    Article  CAS  Google Scholar 

  10. Yamagata, M., Weiner, J.A. & Sanes, J.R. Sidekicks: synaptic adhesion molecules that promote lamina-specific connectivity in the retina. Cell 110, 649–660 (2002).

    Article  CAS  Google Scholar 

  11. Ichtchenko, K. et al. Neuroligin 1: a splice site-specific ligand for beta-neurexins. Cell 81, 435–443 (1995).

    Article  CAS  Google Scholar 

  12. Wu, Q. & Maniatis, T. A striking organization of a large family of human neural cadherin-like cell adhesion genes. Cell 97, 779–790 (1999).

    Article  CAS  Google Scholar 

  13. Ichtchenko, K., Nguyen, T. & Sudhof, T.C. Structures, alternative splicing, and neurexin binding of multiple neuroligins. J. Biol. Chem. 271, 2676–2682 (1996).

    Article  CAS  Google Scholar 

  14. Irie, M. et al. Binding of neuroligins to PSD-95. Science 277, 1511–1515 (1997).

    Article  CAS  Google Scholar 

  15. Dean, C. et al. Neurexin mediates the assembly of presynaptic terminals. Nat. Neurosci. 6, 708–716 (2003).

    Article  CAS  Google Scholar 

  16. Chih, B., Engelman, H. & Scheiffele, P. Control of excitatory and inhibitory synapse formation by neuroligins. Science 307, 1324–1328 (2005).

    Article  CAS  Google Scholar 

  17. Graf, E.R., Zhang, X., Jin, S.X., Linhoff, M.W. & Craig, A.M. Neurexins induce differentiation of GABA and glutamate postsynaptic specializations via neuroligins. Cell 119, 1013–1026 (2004).

    Article  CAS  Google Scholar 

  18. Scheiffele, P., Fan, J., Choih, J., Fetter, R. & Serafini, T. Neuroligin expressed in nonneuronal cells triggers presynaptic development in contacting axons. Cell 101, 657–669 (2000).

    Article  CAS  Google Scholar 

  19. Nam, C.I. & Chen, L. Postsynaptic assembly induced by neurexin-neuroligin interaction and neurotransmitter. Proc. Natl. Acad. Sci. USA 102, 6137–6142 (2005).

    Article  CAS  Google Scholar 

  20. Fu, Z., Washbourne, P., Ortinski, P. & Vicini, S. Functional excitatory synapses in HEK293 cells expressing neuroligin and glutamate receptors. J. Neurophysiol. 90, 3950–3957 (2003).

    Article  CAS  Google Scholar 

  21. Levinson, J.N. et al. Neuroligins mediate excitatory and inhibitory synapse formation: involvement of PSD-95 and neurexin-1beta in neuroligin-induced synaptic specificity. J. Biol. Chem. 280, 17312–17319 (2005).

    Article  CAS  Google Scholar 

  22. Hata, Y., Butz, S. & Sudhof, T.C. CASK: a novel dlg/PSD95 homolog with an N-terminal calmodulin-dependent protein kinase domain identified by interaction with neurexins. J. Neurosci. 16, 2488–2494 (1996).

    Article  CAS  Google Scholar 

  23. Biederer, T. & Sudhof, T.C. Mints as adaptors. Direct binding to neurexins and recruitment of munc18. J. Biol. Chem. 275, 39803–39806 (2000).

    Article  CAS  Google Scholar 

  24. Boucard, A.A., Chubykin, A.A., Comoletti, D., Taylor, P. & Sudhof, T.C. A splice code for trans-synaptic cell adhesion mediated by binding of neuroligin 1 to alpha- and beta-neurexins. Neuron 48, 229–236 (2005).

    Article  CAS  Google Scholar 

  25. Tabuchi, K. & Sudhof, T.C. Structure and evolution of neurexin genes: insight into the mechanism of alternative splicing. Genomics 79, 849–859 (2002).

    Article  CAS  Google Scholar 

  26. Rudenko, G., Nguyen, T., Chelliah, Y., Sudhof, T.C. & Deisenhofer, J. The structure of the ligand-binding domain of neurexin Ibeta: regulation of LNS domain function by alternative splicing. Cell 99, 93–101 (1999).

    Article  CAS  Google Scholar 

  27. Chih, B., Gollan, L. & Scheiffele, P. Alternative splicing controls selective trans-synaptic interactions of the neuroligin-neurexin complex. Neuron 51, 171–178 (2006).

    Article  CAS  Google Scholar 

  28. Graf, E.R., Kang, Y., Hauner, A.M. & Craig, A.M. Structure function and splice site analysis of the synaptogenic activity of the neurexin-1 beta LNS domain. J. Neurosci. 26, 4256–4265 (2006).

    Article  CAS  Google Scholar 

  29. Song, J.Y., Ichtchenko, K., Sudhof, T.C. & Brose, N. Neuroligin 1 is a postsynaptic cell-adhesion molecule of excitatory synapses. Proc. Natl. Acad. Sci. USA 96, 1100–1105 (1999).

    Article  CAS  Google Scholar 

  30. Varoqueaux, F., Jamain, S. & Brose, N. Neuroligin 2 is exclusively localized to inhibitory synapses. Eur. J. Cell Biol. 83, 449–456 (2004).

    Article  CAS  Google Scholar 

  31. Prange, O., Wong, T.P., Gerrow, K., Wang, Y.T. & El-Husseini, A. A balance between excitatory and inhibitory synapses is controlled by PSD-95 and neuroligin. Proc. Natl. Acad. Sci. USA 101, 13915–13920 (2004).

    Article  CAS  Google Scholar 

  32. Sara, Y. et al. Selective capability of SynCAM and neuroligin for functional synapse assembly. J. Neurosci. 25, 260–270 (2005).

    Article  CAS  Google Scholar 

  33. Nakashiba, T. et al. Netrin-G1: a novel glycosyl phosphatidylinositol-linked mammalian netrin that is functionally divergent from classical netrins. J. Neurosci. 20, 6540–6550 (2000).

    Article  CAS  Google Scholar 

  34. Nakashiba, T., Nishimura, S., Ikeda, T. & Itohara, S. Complementary expression and neurite outgrowth activity of netrin-G subfamily members. Mech. Dev. 111, 47–60 (2002).

    Article  CAS  Google Scholar 

  35. Yin, Y., Miner, J.H. & Sanes, J.R. Laminets: laminin- and netrin-related genes expressed in distinct neuronal subsets. Mol. Cell. Neurosci. 19, 344–358 (2002).

    Article  CAS  Google Scholar 

  36. Lin, J.C., Ho, W.H., Gurney, A. & Rosenthal, A. The netrin-G1 ligand NGL-1 promotes the outgrowth of thalamocortical axons. Nat. Neurosci. 6, 1270–1276 (2003).

    Article  CAS  Google Scholar 

  37. Valtschanoff, J.G. & Weinberg, R.J. Laminar organization of the NMDA receptor complex within the postsynaptic density. J. Neurosci. 21, 1211–1217 (2001).

    Article  CAS  Google Scholar 

  38. Kraszewski, K. et al. Synaptic vesicle dynamics in living cultured hippocampal neurons visualized with CY3-conjugated antibodies directed against the lumenal domain of synaptotagmin. J. Neurosci. 15, 4328–4342 (1995).

    Article  CAS  Google Scholar 

  39. Horejsi, V. et al. GPI-microdomains: a role in signalling via immunoreceptors. Immunol. Today 20, 356–361 (1999).

    Article  CAS  Google Scholar 

  40. Meerabux, J.M. et al. Human netrin-G1 isoforms show evidence of differential expression. Genomics 86, 112–116 (2005).

    Article  CAS  Google Scholar 

  41. Comoletti, D. et al. Characterization of the interaction of a recombinant soluble neuroligin-1 with neurexin-1beta. J. Biol. Chem. 278, 50497–50505 (2003).

    Article  CAS  Google Scholar 

  42. Hsueh, Y.P. & Sheng, M. Requirement of N-terminal cysteines of PSD-95 for PSD-95 multimerization and ternary complex formation, but not for binding to potassium channel Kv1.4. J. Biol. Chem. 274, 532–536 (1999).

    Article  CAS  Google Scholar 

  43. Christopherson, K.S. et al. Lipid- and protein-mediated multimerization of PSD-95: implications for receptor clustering and assembly of synaptic protein networks. J. Cell Sci. 116, 3213–3219 (2003).

    Article  CAS  Google Scholar 

  44. Jamain, S. et al. Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nat. Genet. 34, 27–29 (2003).

    Article  CAS  Google Scholar 

  45. Laumonnier, F. et al. X-linked mental retardation and autism are associated with a mutation in the NLGN4 gene, a member of the neuroligin family. Am. J. Hum. Genet. 74, 552–557 (2004).

    Article  CAS  Google Scholar 

  46. Yan, J. et al. Analysis of the neuroligin 3 and 4 genes in autism and other neuropsychiatric patients. Mol. Psychiatry 10, 329–332 (2005).

    Article  CAS  Google Scholar 

  47. Chih, B., Afridi, S.K., Clark, L. & Scheiffele, P. Disorder-associated mutations lead to functional inactivation of neuroligins. Hum. Mol. Genet. 13, 1471–1477 (2004).

    Article  CAS  Google Scholar 

  48. Comoletti, D. et al. The Arg451Cys-neuroligin-3 mutation associated with autism reveals a defect in protein processing. J. Neurosci. 24, 4889–4893 (2004).

    Article  CAS  Google Scholar 

  49. Chubykin, A.A. et al. Dissection of synapse induction by neuroligins: effect of a neuroligin mutation associated with autism. J. Biol. Chem. 280, 22365–22374 (2005).

    Article  CAS  Google Scholar 

  50. Aoki-Suzuki, M. et al. A family-based association study and gene expression nalyses of netrin-G1 and -G2 genes in schizophrenia. Biol. Psychiatry 57, 382–393 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Creative Research Initiative Program of the Korean Ministry of Science and Technology (E.K.), and by grants from the Korea Science and Engineering Foundation (M10500000049-05J0000-04900 to H.K.) and the US National Institutes of Health (NS-39444 to R.J.W.).

Author information

Authors and Affiliations

Authors

Contributions

A.B. and R.J.W. performed the light and electron microscopic studies. H.S.C. and H.K. conducted the in situ hybridization analysis. S.-K.K. performed the in vivo coimmunoprecipitation. J.W. did the coclustering assay. H.W.L. and K.K. performed the northern blot analysis.

Note: Supplementary information is available on the Nature Neuroscience website.

Corresponding author

Correspondence to Eunjoon Kim.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Amino acid sequence alignment of NGL family proteins. (PDF 1845 kb)

Supplementary Fig. 2

Interaction between NGL and PSD-95. (PDF 727 kb)

Supplementary Fig. 3

NGL and netrin-G mediates cell adhesion in an isoform-specific manner. (PDF 773 kb)

Supplementary Fig. 4

Expression patterns of NGL mRNAs and proteins. (PDF 1651 kb)

Supplementary Fig. 5

Synaptic localization of NGL proteins in brain. (PDF 727 kb)

Supplementary Fig. 6

Polarized distribution of netrin-G2 to axons in cultured neurons. (PDF 577 kb)

Supplementary Fig. 7

Characterization of NGL-2 siRNA. (PDF 679 kb)

Supplementary Methods (PDF 60 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S., Burette, A., Chung, H. et al. NGL family PSD-95–interacting adhesion molecules regulate excitatory synapse formation. Nat Neurosci 9, 1294–1301 (2006). https://doi.org/10.1038/nn1763

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1763

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing