Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular taxonomy of major neuronal classes in the adult mouse forebrain

An Erratum to this article was published on 01 February 2006

Abstract

Identifying the neuronal cell types that comprise the mammalian forebrain is a central unsolved problem in neuroscience. Global gene expression profiles offer a potentially unbiased way to assess functional relationships between neurons. Here, we carried out microarray analysis of 12 populations of neurons in the adult mouse forebrain. Five of these populations were chosen from cingulate cortex and included several subtypes of GABAergic interneurons and pyramidal neurons. The remaining seven were derived from the somatosensory cortex, hippocampus, amygdala and thalamus. Using these expression profiles, we were able to construct a taxonomic tree that reflected the expected major relationships between these populations, such as the distinction between cortical interneurons and projection neurons. The taxonomic tree indicated highly heterogeneous gene expression even within a single region. This dataset should be useful for the classification of unknown neuronal subtypes, the investigation of specifically expressed genes and the genetic manipulation of specific neuronal circuit elements.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Twelve neuronal populations.
Figure 2: Selected differentially expressed genes among 12 neuronal populations.
Figure 3: Electrophysiological verification.
Figure 4: Heterogeneity of gene expression within neuronal subpopulations.
Figure 5: Gene ontology map.
Figure 6: Differential expression of gene paralogs.

Similar content being viewed by others

References

  1. Douglas, R.J. & Martin, K.A. Neuronal circuits of the neocortex. Annu. Rev. Neurosci. 27, 419–451 (2004).

    Article  CAS  Google Scholar 

  2. Kawaguchi, Y. & Kubota, Y. GABAergic cell subtypes and their synaptic connections in rat frontal cortex. Cereb. Cortex 7, 476–486 (1997).

    Article  CAS  Google Scholar 

  3. Markram, H. et al. Interneurons of the neocortical inhibitory system. Nat. Rev. Neurosci. 5, 793–807 (2004).

    Article  CAS  Google Scholar 

  4. Mott, D.D. & Dingledine, R. Interneuron diversity series: interneuron research–challenges and strategies. Trends Neurosci. 26, 484–488 (2003).

    Article  CAS  Google Scholar 

  5. Feng, G. et al. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28, 41–51 (2000).

    Article  CAS  Google Scholar 

  6. Oliva, A.A., Jr., Jiang, M., Lam, T., Smith, K.L. & Swann, J.W. Novel hippocampal interneuronal subtypes identified using transgenic mice that express green fluorescent protein in GABAergic interneurons. J. Neurosci. 20, 3354–3368 (2000).

    Article  CAS  Google Scholar 

  7. Chattopadhyaya, B. et al. Experience and activity-dependent maturation of perisomatic GABAergic innervation in primary visual cortex during a postnatal critical period. J. Neurosci. 24, 9598–9611 (2004).

    Article  CAS  Google Scholar 

  8. Lopez-Bendito, G. et al. Preferential origin and layer destination of GAD65-GFP cortical interneurons. Cereb. Cortex 14, 1122–1133 (2004).

    Article  Google Scholar 

  9. Xu, Q., Cobos, I., De La Cruz, E., Rubenstein, J.L. & Anderson, S.A. Origins of cortical interneuron subtypes. J. Neurosci. 24, 2612–2622 (2004).

    Article  CAS  Google Scholar 

  10. Ferezou, I. et al. 5-HT3 receptors mediate serotonergic fast synaptic excitation of neocortical vasoactive intestinal peptide/cholecystokinin interneurons. J. Neurosci. 22, 7389–7397 (2002).

    Article  CAS  Google Scholar 

  11. Galarreta, M., Erdelyi, F., Szabo, G. & Hestrin, S. Electrical coupling among irregular-spiking GABAergic interneurons expressing cannabinoid receptors. J. Neurosci. 24, 9770–9778 (2004).

    Article  CAS  Google Scholar 

  12. Vruwink, M., Schmidt, H.H., Weinberg, R.J. & Burette, A. Substance P and nitric oxide signaling in cerebral cortex: anatomical evidence for reciprocal signaling between two classes of interneurons. J. Comp. Neurol. 441, 288–301 (2001).

    Article  CAS  Google Scholar 

  13. Arlotta, P. et al. Neuronal subtype-specific genes that control corticospinal motor neuron development in vivo. Neuron 45, 207–221 (2005).

    Article  CAS  Google Scholar 

  14. Clarke, V.R. et al. A hippocampal GluR5 kainate receptor regulating inhibitory synaptic transmission. Nature 389, 599–603 (1997).

    Article  CAS  Google Scholar 

  15. Burette, A. et al. Differential cellular and subcellular localization of AMPA receptor-binding protein and glutamate receptor-interacting protein. J. Neurosci. 21, 495–503 (2001).

    Article  CAS  Google Scholar 

  16. Anderson, S.A. et al. Mutations of the homeobox genes Dlx-1 and Dlx-2 disrupt the striatal subventricular zone and differentiation of late born striatal neurons. Neuron 19, 27–37 (1997).

    Article  CAS  Google Scholar 

  17. Marin, O., Anderson, S.A. & Rubenstein, J.L. Origin and molecular specification of striatal interneurons. J. Neurosci. 20, 6063–6076 (2000).

    Article  CAS  Google Scholar 

  18. Stuhmer, T., Anderson, S.A., Ekker, M. & Rubenstein, J.L. Ectopic expression of the Dlx genes induces glutamic acid decarboxylase and Dlx expression. Development 129, 245–252 (2002).

    CAS  PubMed  Google Scholar 

  19. Colombo, E., Galli, R., Cossu, G., Gecz, J. & Broccoli, V. Mouse orthologue of ARX, a gene mutated in several X-linked forms of mental retardation and epilepsy, is a marker of adult neural stem cells and forebrain GABAergic neurons. Dev. Dyn. 231, 631–639 (2004).

    Article  CAS  Google Scholar 

  20. Poirier, K. et al. Neuroanatomical distribution of ARX in brain and its localisation in GABAergic neurons. Brain Res. Mol. Brain Res. 122, 35–46 (2004).

    Article  CAS  Google Scholar 

  21. Sah, P. & Faber, E.S. Channels underlying neuronal calcium-activated potassium currents. Prog. Neurobiol. 66, 345–353 (2002).

    Article  CAS  Google Scholar 

  22. Robinson, R.B. & Siegelbaum, S.A. Hyperpolarization-activated cation currents: from molecules to physiological function. Annu. Rev. Physiol. 65, 453–480 (2003).

    Article  CAS  Google Scholar 

  23. Ashburner, M. et al. Gene ontology: tool for the unification of biology. Nat. Genet. 25, 25–29 (2000).

    Article  CAS  Google Scholar 

  24. Ohno, S. Evolution by Gene Duplication (Springer-Verlag, New York, 1970).

    Book  Google Scholar 

  25. Bairoch, A. et al. The universal protein resource (UniProt). Nucleic Acids Res. 33, D154–D159 (2005).

    Article  CAS  Google Scholar 

  26. Takamori, S., Rhee, J.S., Rosenmund, C. & Jahn, R. Identification of a vesicular glutamate transporter that defines a glutamatergic phenotype in neurons. Nature 407, 189–194 (2000).

    Article  CAS  Google Scholar 

  27. Su, A.I. et al. Large-scale analysis of the human and mouse transcriptomes. Proc. Natl. Acad. Sci. USA 99, 4465–4470 (2002).

    Article  CAS  Google Scholar 

  28. Su, A.I. et al. A gene atlas of the mouse and human protein-encoding transcriptomes. Proc. Natl. Acad. Sci. USA 101, 6062–6067 (2004).

    Article  CAS  Google Scholar 

  29. Evans, S.J. et al. DNA microarray analysis of functionally discrete human brain regions reveals divergent transcriptional profiles. Neurobiol. Dis. 14, 240–250 (2003).

    Article  CAS  Google Scholar 

  30. McBain, C.J. & Fisahn, A. Interneurons unbound. Nat. Rev. Neurosci. 2, 11–23 (2001).

    Article  CAS  Google Scholar 

  31. Diez del Corral, R. & Storey, K.G. Markers in vertebrate neurogenesis. Nat. Rev. Neurosci. 2, 835–839 (2001).

    Article  CAS  Google Scholar 

  32. Dougherty, J.D. & Geschwind, D.H. Progress in realizing the promise of microarrays in systems neurobiology. Neuron 45, 183–185 (2005).

    Article  CAS  Google Scholar 

  33. Gong, S. et al. A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 425, 917–925 (2003).

    Article  CAS  Google Scholar 

  34. Fukuchi-Shimogori, T. & Grove, E.A. Neocortex patterning by the secreted signaling molecule FGF8. Science 294, 1071–1074 (2001).

    Article  CAS  Google Scholar 

  35. Lukaszewicz, A. et al. G1 phase regulation, area-specific cell cycle control, and cytoarchitectonics in the primate cortex. Neuron 47, 353–364 (2005).

    Article  CAS  Google Scholar 

  36. O'Leary, D.D. & Nakagawa, Y. Patterning centers, regulatory genes and extrinsic mechanisms controlling arealization of the neocortex. Curr. Opin. Neurobiol. 12, 14–25 (2002).

    Article  CAS  Google Scholar 

  37. Anderson, S., Mione, M., Yun, K. & Rubenstein, J.L. Differential origins of neocortical projection and local circuit neurons: role of Dlx genes in neocortical interneuronogenesis. Cereb. Cortex 9, 646–654 (1999).

    Article  CAS  Google Scholar 

  38. Gonchar, Y. & Burkhalter, A. Three distinct families of GABAergic neurons in rat visual cortex. Cereb. Cortex 7, 347–358 (1997).

    Article  CAS  Google Scholar 

  39. Kubota, Y. & Kawaguchi, Y. Three classes of GABAergic interneurons in neocortex and neostriatum. Jpn. J. Physiol. 44 (Suppl 2), S145–S148 (1994).

    CAS  PubMed  Google Scholar 

  40. Gewin, V. A golden age of brain exploration. PLoS Biol. 3, e24 (2005).

    Article  Google Scholar 

  41. Bussemaker, H.J., Li, H. & Siggia, E.D. Regulatory element detection using correlation with expression. Nat. Genet. 27, 167–171 (2001).

    Article  CAS  Google Scholar 

  42. Roth, F.P., Hughes, J.D., Estep, P.W. & Church, G.M. Finding DNA regulatory motifs within unaligned noncoding sequences clustered by whole-genome mRNA quantitation. Nat. Biotechnol. 16, 939–945 (1998).

    Article  CAS  Google Scholar 

  43. Tavazoie, S., Hughes, J.D., Campbell, M.J., Cho, R.J. & Church, G.M. Systematic determination of genetic network architecture. Nat. Genet. 22, 281–285 (1999).

    Article  CAS  Google Scholar 

  44. Ihmels, J., Bergmann, S. & Barkai, N. Defining transcription modules using large-scale gene expression data. Bioinformatics 20, 1993–2003 (2004).

    Article  CAS  Google Scholar 

  45. Ihmels, J. et al. Revealing modular organization in the yeast transcriptional network. Nat. Genet. 31, 370–377 (2002).

    Article  CAS  Google Scholar 

  46. Hempel, C.M., Hartman, K.H., Wang, X.J., Turrigiano, G.G. & Nelson, S.B. Multiple forms of short-term plasticity at excitatory synapses in rat medial prefrontal cortex. J. Neurophysiol. 83, 3031–3041 (2000).

    Article  CAS  Google Scholar 

  47. Paxinos, G. & Franklin, K.B.J. The Mouse Brain in Stereotaxic Coordinates (Academic Press, Boston, 2001).

    Google Scholar 

  48. Li, C. & Wong, W.H. Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc. Natl. Acad. Sci. USA 98, 31–36 (2001).

    Article  CAS  Google Scholar 

  49. Esclapez, M., Tillakaratne, N.J., Tobin, A.J. & Houser, C.R. Comparative localization of mRNAs encoding two forms of glutamic acid decarboxylase with nonradioactive in situ hybridization methods. J. Comp. Neurol. 331, 339–362 (1993).

    Article  CAS  Google Scholar 

  50. Jongen-Relo, A.L. & Amaral, D.G. A double labeling technique using WGA-apoHRP-gold as a retrograde tracer and nonisotopic in situ hybridization histochemistry for the detection of mRNA. J. Neurosci. Methods 101, 9–17 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank G. Turrigiano, P. Sengupta, D. Das and Y. Sugino for comments on the manuscript; R. Pavlyuk, Z. Zhao and Z. Meng for technical assistance; and J. Fahrenkrug (Bispebjerg University Hospital, Denmark) for a gift of VIP/PHI antibody. This work was supported by a grant from the National Eye Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sacha B Nelson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sugino, K., Hempel, C., Miller, M. et al. Molecular taxonomy of major neuronal classes in the adult mouse forebrain. Nat Neurosci 9, 99–107 (2006). https://doi.org/10.1038/nn1618

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1618

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing