Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

NMDA receptors regulate developmental gap junction uncoupling via CREB signaling

Abstract

Signaling through gap junctions (electrical synapses) is important in the development of the mammalian central nervous system. Abundant between neurons during postnatal development, gap junction coupling subsequently decreases and remains low in the adult, confined to specific subsets of neurons. Here we report that developmental uncoupling of gap junctions in the rat hypothalamus in vivo and in vitro is associated with a decrease in connexin 36 (Cx36) protein expression. Both developmental gap junction uncoupling and Cx36 downregulation are prevented by the blockade of NMDA glutamate receptors, action potentials and the calcium–cyclic AMP response element binding protein (CREB), and are accelerated by CREB overexpression. Developmental gap junction uncoupling and Cx36 downregulation are not affected by blockade of non-NMDA glutamate receptors, and do not occur in hypothalamic neurons from NMDA receptor subunit 1 (NMDAR1) knockout mice. These results demonstrate that NMDA receptor activity contributes to the developmental uncoupling of gap junctions via CREB-dependent downregulation of Cx36.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chronic NMDA receptor blockade by MK-801 reduces developmental gap junction uncoupling and Cx36 downregulation in the hypothalamus in vivo.
Figure 2: Chronic NMDA receptor blockade by AP5 prevents developmental gap junction uncoupling and Cx36 downregulation in hypothalamic neurons in vitro.
Figure 3: NMDAR1 knockout prevents developmental gap junction uncoupling and Cx36 downregulation.
Figure 4: Signal transduction pathways in developmental gap junction uncoupling.
Figure 5: Developmental gap junction uncoupling and Cx36 downregulation are mediated via CREB-dependent mechanisms.

Similar content being viewed by others

References

  1. Becker, D.L. & Mobbs, P. Connexin alpha1 and cell proliferation in the developing chick retina. Exp. Neurol. 156, 326–332 (1999).

    Article  CAS  Google Scholar 

  2. Bani-Yaghoub, M., Underhill, T.M. & Naus, C.C. Gap junction blockage interferes with neuronal and astroglial differentiation of mouse P19 embryonal carcinoma cells. Dev. Genet. 24, 69–81 (1999).

    Article  CAS  Google Scholar 

  3. Lin, J.H. et al. Gap-junction-mediated propagation and amplification of cell injury. Nat. Neurosci. 1, 494–500 (1998).

    Article  CAS  Google Scholar 

  4. Lo Turco, J.J. & Kriegstein, A.R. Clusters of coupled neuroblasts in embryonic neocortex. Science 252, 563–566 (1991).

    Article  CAS  Google Scholar 

  5. Allen, F. & Warner, A. Gap junctional communication during neuromuscular junction formation. Neuron 6, 101–111 (1991).

    Article  CAS  Google Scholar 

  6. Walton, K.D. & Navarrete, R. Postnatal changes in motoneurone electrotonic coupling studied in the in vitro rat lumbar spinal cord. J. Physiol. (Lond.) 433, 283–305 (1991).

    Article  CAS  Google Scholar 

  7. Peinado, A., Yuste, R. & Katz, L.C. Gap junctional communication and the development of local circuits in neocortex. Cereb. Cortex 3, 488–498 (1993).

    Article  CAS  Google Scholar 

  8. Personius, K., Chang, Q., Bittman, K., Panzer, J. & Balice-Gordon, R. Gap junctional communication among motor and other neurons shapes patterns of neural activity and synaptic connectivity during development. Cell. Commun. Adhes. 8, 329–333 (2001).

    Article  CAS  Google Scholar 

  9. Roerig, B. & Feller, M.B. Neurotransmitters and gap junctions in developing neural circuits. Brain Res. Brain Res. Rev. 32, 86–114 (2000).

    Article  CAS  Google Scholar 

  10. Bennett, M.V. & Zukin, R.S. Electrical coupling and neuronal synchronization in the mammalian brain. Neuron 41, 495–511 (2004).

    Article  CAS  Google Scholar 

  11. Naus, C.C. & Bani-Yaghoub, M. Gap junctional communication in the developing central nervous system. Cell Biol. Int. 22, 751–763 (1998).

    Article  CAS  Google Scholar 

  12. Kandler, K. & Katz, L.C. Neuronal coupling and uncoupling in the developing nervous system. Curr. Opin. Neurobiol. 5, 98–105 (1995).

    Article  CAS  Google Scholar 

  13. Kandler, K. & Katz, L.C. Coordination of neuronal activity in developing visual cortex by gap junction-mediated biochemical communication. J. Neurosci. 18, 1419–1427 (1998).

    Article  CAS  Google Scholar 

  14. Meyer, T. Cell signaling by second messenger waves. Cell 64, 675–678 (1991).

    Article  CAS  Google Scholar 

  15. Ben-Ari, Y. Developing networks play a similar melody. Trends Neurosci. 24, 353–360 (2001).

    Article  CAS  Google Scholar 

  16. Garaschuk, O., Linn, J., Eilers, J. & Konnerth, A. Large-scale oscillatory calcium waves in the immature cortex. Nat. Neurosci. 3, 452–459 (2000).

    Article  CAS  Google Scholar 

  17. Feller, M.B., Wellis, D.P., Stellwagen, D., Werblin, F.S. & Shatz, C.J. Requirement for cholinergic synaptic transmission in the propagation of spontaneous retinal waves. Science 272, 1182–1187 (1996).

    Article  CAS  Google Scholar 

  18. Wong, R.O. Retinal waves and visual system development. Annu. Rev. Neurosci. 22, 29–47 (1999).

    Article  CAS  Google Scholar 

  19. Milner, L.D. & Landmesser, L.T. Cholinergic and GABAergic inputs drive patterned spontaneous motoneuron activity before target contact. J. Neurosci. 19, 3007–3022 (1999).

    Article  CAS  Google Scholar 

  20. Strata, F. et al. A pacemaker current in dye-coupled hilar interneurons contributes to the generation of giant GABAergic potentials in developing hippocampus. J. Neurosci. 17, 1435–1446 (1997).

    Article  CAS  Google Scholar 

  21. Chang, Q., Gonzalez, M., Pinter, M.J. & Balice-Gordon, R.J. Gap junctional coupling and patterns of connexin expression among neonatal rat lumbar spinal motor neurons. J. Neurosci. 19, 10813–10828 (1999).

    Article  CAS  Google Scholar 

  22. Mentis, G.Z., Diaz, E., Moran, L.B. & Navarrete, R. Increased incidence of gap junctional coupling between spinal motoneurones following transient blockade of NMDA receptors in neonatal rats. J. Physiol. (Lond.) 544, 757–764 (2002).

    Article  CAS  Google Scholar 

  23. Connors, B.W., Benardo, L.S. & Prince, D.A. Coupling between neurons of the developing rat neocortex. J. Neurosci. 3, 773–782 (1983).

    Article  CAS  Google Scholar 

  24. Peinado, A., Yuste, R. & Katz, L.C. Extensive dye coupling between rat neocortical neurons during the period of circuit formation. Neuron 10, 103–114 (1993).

    Article  CAS  Google Scholar 

  25. Venance, L., Glowinski, J. & Giaume, C. Electrical and chemical transmission between striatal GABAergic output neurones in rat brain slices. J. Physiol. (Lond.) 559, 215–230 (2004).

    Article  CAS  Google Scholar 

  26. Kandler, K. & Katz, L.C. Relationship between dye coupling and spontaneous activity in developing ferret visual cortex. Dev. Neurosci. 20, 59–64 (1998).

    Article  CAS  Google Scholar 

  27. Hatton, G.I. Synaptic modulation of neuronal coupling. Cell Biol. Int. 22, 765–780 (1998).

    Article  CAS  Google Scholar 

  28. Rash, J.E. et al. Immunogold evidence that neuronal gap junctions in adult rat brain and spinal cord contain connexin-36 but not connexin-32 or connexin-43. Proc. Natl. Acad. Sci. USA 97, 7573–7578 (2000).

    Article  CAS  Google Scholar 

  29. Belluardo, N. et al. Expression of connexin36 in the adult and developing rat brain. Brain Res. 865, 121–138 (2000).

    Article  CAS  Google Scholar 

  30. Long, M.A., Jutras, M.J., Connors, B.W. & Burwell, R.D. Electrical synapses coordinate activity in the suprachiasmatic nucleus. Nat. Neurosci. 8, 61–66 (2005).

    Article  CAS  Google Scholar 

  31. Srinivas, M. et al. Functional properties of channels formed by the neuronal gap junction protein connexin36. J. Neurosci. 19, 9848–9855 (1999).

    Article  CAS  Google Scholar 

  32. Bessho, Y., Nawa, H. & Nakanishi, S. Selective up-regulation of an NMDA receptor subunit mRNA in cultured cerebellar granule cells by K(+)-induced depolarization and NMDA treatment. Neuron 12, 87–95 (1994).

    Article  CAS  Google Scholar 

  33. Hardingham, G.E., Fukunaga, Y. & Bading, H. Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat. Neurosci. 5, 405–414 (2002).

    Article  CAS  Google Scholar 

  34. Greenberg, M.E. & Ziff, E.B. Signal transduction in the postsynaptic neuron: activity-dependent regulation of gene expression. in Synapses (eds. Cowan, M.W., Sudhof, T.C. & Stevens, C.F.) 357–391 (Johns Hopkins Univ. Press, Baltimore, 2001).

    Google Scholar 

  35. Lonze, B.E. & Ginty, D.D. Function and regulation of CREB family transcription factors in the nervous system. Neuron 35, 605–623 (2002).

    Article  CAS  Google Scholar 

  36. Carlezon, W.A., Jr. et al. Regulation of cocaine reward by CREB. Science 282, 2272–2275 (1998).

    Article  CAS  Google Scholar 

  37. Guzowski, J.F. & McGaugh, J.L. Antisense oligodeoxynucleotide-mediated disruption of hippocampal cAMP response element binding protein levels impairs consolidation of memory for water maze training. Proc. Natl. Acad. Sci. USA 94, 2693–2698 (1997).

    Article  CAS  Google Scholar 

  38. Venance, L. et al. Connexin expression in electrically coupled postnatal rat brain neurons. Proc. Natl. Acad. Sci. USA 97, 10260–10265 (2000).

    Article  CAS  Google Scholar 

  39. Connors, B.W. & Long, M.A. Electrical synapses in the mammalian brain. Annu. Rev. Neurosci. 27, 393–418 (2004).

    Article  CAS  Google Scholar 

  40. Galarreta, M. & Hestrin, S. Electrical synapses between GABA-releasing interneurons. Nat. Rev. Neurosci. 2, 425–433 (2001).

    Article  CAS  Google Scholar 

  41. Xia, Z. & Storm, D.R. Regulatory Properties of the Mammalian Adenylyl Cyclases Ch. 7, 105–134 (R.G. Landes Austin, Texas, 1996).

    Google Scholar 

  42. Kornhuber, J. & Weller, M. Psychotogenicity and N-methyl-D-aspartate receptor antagonism: implications for neuroprotective pharmacotherapy. Biol. Psychiatry 41, 135–144 (1997).

    Article  CAS  Google Scholar 

  43. Facchinetti, F. et al. Structural, neurochemical and behavioural consequences of neonatal blockade of NMDA receptor through chronic treatment with CGP 39551 or MK-801. Brain Res. Dev. Brain Res. 74, 219–224 (1993).

    Article  CAS  Google Scholar 

  44. Belousov, A.B., Hunt, N.D., Raju, R.P. & Denisova, J.V. Calcium-dependent regulation of cholinergic cell phenotype in the hypothalamus in vitro. J. Neurophysiol. 88, 1352–1362 (2002).

    Article  CAS  Google Scholar 

  45. Aberg, N.D., Ronnback, L. & Eriksson, P.S. Connexin43 mRNA and protein expression during postnatal development of defined brain regions. Brain Res. Dev. Brain Res. 115, 97–101 (1999).

    Article  CAS  Google Scholar 

  46. Belousov, A.B. & van den Pol, A.N. Local synaptic release of glutamate from neurons in the rat hypothalamic arcuate nucleus. J. Physiol. (Lond.) 499, 747–761 (1997).

    Article  CAS  Google Scholar 

  47. Belousov, A.B., O'Hara, B.F. & Denisova, J.V. Acetylcholine becomes the major excitatory neurotransmitter in the hypothalamus in vitro in the absence of glutamate excitation. J. Neurosci. 21, 2015–2027 (2001).

    Article  CAS  Google Scholar 

  48. Luther, J.A. & Tasker, J.G. Voltage-gated currents distinguish parvocellular from magnocellular neurones in the rat hypothalamic paraventricular nucleus. J. Physiol. (Lond.) 523, 193–209 (2000).

    Article  CAS  Google Scholar 

  49. Li, Y., Erzurumlu, R.S., Chen, C., Jhaveri, S. & Tonegawa, S. Whisker-related neuronal patterns fail to develop in the trigeminal brainstem nuclei of NMDAR1 knockout mice. Cell 76, 427–437 (1994).

    Article  CAS  Google Scholar 

  50. Sugiura, N., Patel, R.G. & Corriveau, R.A. N-methyl-D-aspartate receptors regulate a group of transiently expressed genes in the developing brain. J. Biol. Chem. 276, 14257–14263 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to J. Denisova, E. Leininger, I.R. Popescu and T. Stuart for technical contributions and to R.L. Neve (Harvard Medical School) for supplying CREB viral vectors. This research was supported by a Louisiana Board of Regents Research Competitiveness Subprogram award to R.A.C.; and by a US National Institutes of Health grant (RO1 DA015088-01A1), a National Science Foundation grant (IBN-0117603) and an American Heart Association grant (0350530N) to A.B.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei B Belousov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Initial developmental increase in gap junction coupling and Cx36 expression in the hypothalamus in vivo and in vitro. (PDF 347 kb)

Supplementary Fig. 2

Effects of NMDA on cytoplasmic Ca2+ activity in hypothalamic cultures obtained from wild–type and NMDAR1 knockout mice. (PDF 227 kb)

Supplementary Fig. 3

Transient developmental increase in gap junction coupling and Cx36 expression are mediated by action potential–dependent mechanisms. (PDF 117 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arumugam, H., Liu, X., Colombo, P. et al. NMDA receptors regulate developmental gap junction uncoupling via CREB signaling. Nat Neurosci 8, 1720–1726 (2005). https://doi.org/10.1038/nn1588

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1588

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing