Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

In praise of artifice

Abstract

The visual system evolved to process natural images, and the goal of visual neuroscience is to understand the computations it uses to do this. Indeed the goal of any theory of visual function is a model that will predict responses to any stimulus, including natural scenes. It has, however, recently become common to take this fundamental principle one step further: trying to use photographic or cinematographic representations of natural scenes (natural stimuli) as primary probes to explore visual computations. This approach is both challenging and controversial, and we argue that this use of natural images is so fraught with difficulty that it is not useful. Traditional methods for exploring visual computations that use artificial stimuli with carefully selected properties have been and continue to be the most effective tools for visual neuroscience. The proper use of natural stimuli is to test models based on responses to these synthetic stimuli, not to replace them.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: 'Standard' models of visual cortical cells, old and new.

Similar content being viewed by others

References

  1. Olshausen, B.A. & Field, D.J. How close are we to understanding V1? Neural Comput. 17, 1665–1699 (2005).

    Article  Google Scholar 

  2. Lennie, P. & Movshon, J.A. Coding of color and form in the geniculostriate visual pathway. J. Opt. Soc. Am. A 22, 1–21 (2005).

    Article  Google Scholar 

  3. Jones, J.P. & Palmer, L.A. The two-dimensional spatial structure of simple receptive fields in cat striate cortex. J. Neurophysiol. 58, 1187–1211 (1987).

    Article  CAS  Google Scholar 

  4. Ringach, D.L. Spatial structure and symmetry of simple-cell receptive fields in macaque primary visual cortex. J. Neurophysiol. 88, 455–463 (2002).

    Article  Google Scholar 

  5. Movshon, J.A., Thompson, I.D. & Tolhurst, D.J. Spatial summation in the receptive fields of simple cells in the cat's striate cortex. J. Physiol. (Lond.) 283, 53–77 (1978).

    Article  CAS  Google Scholar 

  6. Adelson, E.H. & Bergen, J.R. Spatiotemporal energy models for the perception of motion. J. Opt. Soc. Am. A 2, 284–299 (1985).

    Article  CAS  Google Scholar 

  7. Spitzer, H. & Hochstein, S. A complex-cell receptive-field model. J. Neurophysiol. 53, 1266–1286 (1985).

    Article  CAS  Google Scholar 

  8. De Valois, K.K., De Valois, R.L. & Yund, E.W. Responses of striate cortex cells to grating and checkerboard patterns. J. Physiol. (Lond.) 291, 483–505 (1979).

    Article  CAS  Google Scholar 

  9. Smith, M.A., Bair, W. & Movshon, J.A. Signals in macaque striate cortical neurons that support the perception of glass patterns. J. Neurosci. 22, 8334–8345 (2002).

    Article  CAS  Google Scholar 

  10. Creutzfeldt, O.D. & Nothdurft, H.C. Representation of complex visual stimuli in the brain. Naturwissenschaften 65, 307–318 (1978).

    Article  CAS  Google Scholar 

  11. Touryan, J., Lau, B. & Dan, Y. Isolation of relevant visual features from random stimuli for cortical complex cells. J. Neurosci. 22, 10811–10818 (2002).

    Article  CAS  Google Scholar 

  12. Rust, N.C., Schwartz, O., Movshon, J.A. & Simoncelli, E.P. Spatiotemporal elements of macaque V1 receptive fields. Neuron 46, 945–956 (2005).

    Article  CAS  Google Scholar 

  13. Shapley, R.M. & Enroth-Cugell, C. Visual adaptation and retinal gain controls. Prog. Retinal Res. 3, 263–346 (1984).

    Article  Google Scholar 

  14. Bonds, A.B. Role of inhibition in the specification of orientation selectivity of cells in the cat striate cortex. Vis. Neurosci. 2, 41–55 (1989).

    Article  CAS  Google Scholar 

  15. Geisler, W.S. & Albrecht, D.G. Cortical neurons: isolation of contrast gain control. Vision Res. 32, 1409–1410 (1992).

    Article  CAS  Google Scholar 

  16. Heeger, D.J. Normalization of cell responses in cat striate cortex. Vis. Neurosci. 9, 181–197 (1992).

    Article  CAS  Google Scholar 

  17. Carandini, M., Heeger, D.J. & Movshon, J.A. Linearity and normalization in simple cells of the macaque primary visual cortex. J. Neurosci. 17, 8621–8644 (1997).

    Article  CAS  Google Scholar 

  18. Bair, W. & Movshon, J.A. Adaptive temporal integration of motion in direction-selective neurons in macaque visual cortex. J. Neurosci. 24, 7305–7323 (2004).

    Article  CAS  Google Scholar 

  19. Maffei, L., Fiorentini, A. & Bisti, S. Neural correlate of perceptual adaptation to gratings. Science 182, 1036–1038 (1973).

    Article  CAS  Google Scholar 

  20. Carandini, M., Movshon, J.A. & Ferster, D. Pattern adaptation and cross-orientation interactions in the primary visual cortex. Neuropharmacology 37, 501–511 (1998).

    Article  CAS  Google Scholar 

  21. Sanchez-Vives, M.V., Nowak, L.G. & McCormick, D.A. Membrane mechanisms underlying contrast adaptation in cat area 17 in vivo. J. Neurosci. 20, 4267–4285 (2000).

  22. Movshon, J.A. & Lennie, P. Pattern-selective adaptation in visual cortical neurones. Nature 278, 850–852 (1979).

    Article  CAS  Google Scholar 

  23. Chance, F.S., Nelson, S.B. & Abbott, L.F. Synaptic depression and the temporal response characteristics of V1 cells. J. Neurosci. 18, 4785–4799 (1998).

    Article  CAS  Google Scholar 

  24. Muller, J.R., Metha, A.B., Krauskopf, J. & Lennie, P. Rapid adaptation in visual cortex to the structure of images. Science 285, 1405–1408 (1999).

    Article  CAS  Google Scholar 

  25. Hubel, D.H. & Wiesel, T.N. Receptive fields and functional architecture of monkey striate cortex. J. Physiol. (Lond.) 195, 215–243 (1968).

    Article  CAS  Google Scholar 

  26. Blakemore, C. & Tobin, E.A. Lateral inhibition between orientation detectors in the cat's visual cortex. Exp. Brain Res. 15, 439–440 (1972).

    Article  CAS  Google Scholar 

  27. Angelucci, A., Levitt, J.B. & Lund, J.S. Anatomical origins of the classical receptive field and modulatory surround field of single neurons in macaque visual cortical area V1. Prog. Brain Res. 136, 373–388 (2002).

    Article  Google Scholar 

  28. Cavanaugh, J.R., Bair, W. & Movshon, J.A. Nature and interaction of signals from the receptive field center and surround in macaque V1 neurons. J. Neurophysiol. 88, 2530–2546 (2002).

    Article  Google Scholar 

  29. Sceniak, M.P., Ringach, D.L., Hawken, M.J. & Shapley, R. Contrast's effect on spatial summation by macaque V1 neurons. Nat. Neurosci. 2, 733–739 (1999).

    Article  CAS  Google Scholar 

  30. Keat, J., Reinagel, P., Reid, R.C. & Meister, M. Predicting every spike: a model for the responses of visual neurons. Neuron 30, 803–817 (2001).

    Article  CAS  Google Scholar 

  31. Paninski, L., Pillow, J.W. & Simoncelli, E.P. Maximum likelihood estimation of a stochastic integrate-and-fire neural encoding model. Neural Comput. 16, 2533–2561 (2004).

    Article  Google Scholar 

  32. Aguera y Arcas, B., Fairhall, A.L. & Bialek, W. Computation in a single neuron: Hodgkin and Huxley revisited. Neural Comput. 15, 1715–1749 (2003).

    Article  Google Scholar 

  33. Simoncelli, E.P., Pillow, J.W., Paninski, L. & Schwartz, O. Characterization of neural responses with stochastic stimuli. in The Cognitive Neurosciences (ed. Gazzaniga, M.) 327–338 (MIT Press, Cambridge, Massachusetts, 2004).

    Google Scholar 

  34. Olshausen, B.A. & Field, D.J. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381, 607–609 (1996).

    Article  CAS  Google Scholar 

  35. Barlow, H.B. Possible principles underlying the transformations of sensory messages. in Sensory Communication (ed. Rosenblith, W.A.) 217–234 (MIT Press, Cambridge, Massachusetts, 1961).

    Google Scholar 

  36. Bell, A.J. & Sejnowski, T.J. The independent components of natural scenes are edge filters. Vision Res. 37, 3327–3338 (1997).

    Article  CAS  Google Scholar 

  37. van Hateren, J.H. & van der Schaaf, A. Independent component filters of natural images compared with simple cells in primary visual cortex. Proc. Royal Soc. Lond. B Biol. Sci. 265, 359–366 (1998).

    Article  CAS  Google Scholar 

  38. Schwartz, O. & Simoncelli, E.P. Natural signal statistics and sensory gain control. Nat. Neurosci. 4, 819–825 (2001).

    Article  CAS  Google Scholar 

  39. Chichilnisky, E.J. A simple white noise analysis of neuronal light responses. Network 12, 199–213 (2001).

    Article  CAS  Google Scholar 

  40. Theunissen, F.E. et al. Estimating spatio-temporal receptive fields of auditory and visual neurons from their responses to natural stimuli. Network 12, 289–316 (2001).

    Article  CAS  Google Scholar 

  41. David, S.V., Vinje, W.E. & Gallant, J.L. Natural stimulus statistics alter the receptive field structure of V1 neurons. J. Neurosci. 24, 6991–7006 (2004).

    Article  CAS  Google Scholar 

  42. Touryan, J., Felsen, G. & Dan, Y. Spatial structure of complex cell receptive fields measured with natural images. Neuron 45, 781–791 (2005).

    Article  CAS  Google Scholar 

  43. Sharpee, T., Rust, N.C. & Bialek, W. Analyzing neural responses to natural signals: maximally informative dimensions. Neural Comput. 16, 223–250 (2004).

    Article  Google Scholar 

  44. Smyth, D., Willmore, B., Baker, G.E., Thompson, I.D. & Tolhurst, D.J. The receptive-field organization of simple cells in primary visual cortex of ferrets under natural scene stimulation. J. Neurosci. 23, 4746–4759 (2003).

    Article  CAS  Google Scholar 

  45. Ringach, D.L., Hawken, M.J. & Shapley, R. Receptive field structure of neurons in monkey primary visual cortex revealed by stimulation with natural image sequences. J. Vis. 2, 12–24 (2002).

    Article  Google Scholar 

  46. Prenger, R., Wu, M.C., David, S.V. & Gallant, J.L. Nonlinear V1 responses to natural scenes revealed by neural network analysis. Neural Netw. 17, 663–679 (2004).

    Article  Google Scholar 

  47. Felsen, G., Touryan, J., Han, F. & Dan, Y. Cortical sensitivity to visual features in natural scenes. PLoS Biol. 3, e342 (2005).

    Article  Google Scholar 

  48. Mante, V., Frazor, R.A., Bonin, V., Geislr, W.S. & Carandini, M. Independence of luminance and contrast in natural scenes and in the early visual system. Nat. Neurosci. 8 1690–1697 (2005).

    Article  CAS  Google Scholar 

  49. Gross, C.G., Rocha-Miranda, C.E. & Bender, D.B. Visual properties of neurons in inferotemporal cortex of the macaque. J. Neurophysiol. 35, 96–111 (1972).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank E.P. Simoncelli for discussions.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rust, N., Movshon, J. In praise of artifice. Nat Neurosci 8, 1647–1650 (2005). https://doi.org/10.1038/nn1606

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1606

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing