Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

BK channel β4 subunit reduces dentate gyrus excitability and protects against temporal lobe seizures

Abstract

Synaptic inhibition within the hippocampus dentate gyrus serves a 'low-pass filtering' function that protects against hyperexcitability that leads to temporal lobe seizures. Here we demonstrate that calcium-activated potassium (BK) channel accessory β4 subunits serve as key regulators of intrinsic firing properties that contribute to the low-pass filtering function of dentate granule cells. Notably, a critical β4 subunit function is to preclude BK channels from contributing to membrane repolarization and thereby broaden action potentials. Longer-duration action potentials secondarily recruit SK channels, leading to greater spike frequency adaptation and reduced firing rates. In contrast, granule cells from β4 knockout mice show a gain-of-function for BK channels that sharpens action potentials and supports higher firing rates. Consistent with breakdown of the dentate filter, β4 knockouts show distinctive seizures emanating from the temporal cortex, demonstrating a unique nonsynaptic mechanism for gate control of hippocampal synchronization leading to temporal lobe epilepsy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation of β4 gene-targeted mice.
Figure 2: Deletion of the β4 subunit causes nonconvulsive partial onset seizures.
Figure 3: Deletion of the β4 subunits converts slow-gated, type II BK channels to fast-gated type I BK channels.
Figure 4: Firing properties of dentate gyrus granule cells evoked by current injections.
Figure 5: Effect of BK channel block on firing properties and action potential waveforms.
Figure 6: SK channel block affects firing properties of wild-type but not β4−/− cells.

Similar content being viewed by others

References

  1. Sloviter, R.S. et al. “Dormant basket cell” hypothesis revisited: relative vulnerabilities of dentate gyrus mossy cells and inhibitory interneurons after hippocampal status epilepticus in the rat. J. Comp. Neurol. 459, 44–76 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Ratzliff, A.H., Santhakumar, V., Howard, A. & Soltesz, I. Mossy cells in epilepsy: rigor mortis or vigor mortis? Trends Neurosci. 25, 140–144 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Coulter, D.A. Mossy fiber zinc and temporal lobe epilepsy: pathological association with altered “epileptic” gamma-aminobutyric acid A receptors in dentate granule cells. Epilepsia 41 (Suppl.), S96–S99 (2000).

    Article  PubMed  Google Scholar 

  4. Buhl, E.H., Otis, T.S. & Mody, I. Zinc-induced collapse of augmented inhibition by GABA in a temporal lobe epilepsy model. Science 271, 369–373 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Garcia, M.L., Gao, Y., McManus, O.B. & Kaczorowski, G.J. Potassium channels: from scorpion venoms to high-resolution structure. Toxicon 39, 739–748 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Stocker, M. Ca(2+)-activated K(+) channels: molecular determinants and function of the SK family. Nat. Rev. Neurosci. 5, 758–770 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Stocker, M., Hirzel, K., D'Hoedt, D. & Pedarzani, P. Matching molecules to function: neuronal Ca2+-activated K+ channels and afterhyperpolarizations. Toxicon 43, 933–949 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Greffrath, W. et al. Contribution of Ca2+-activated K+ channels to hyperpolarizing after-potentials and discharge pattern in rat supraoptic neurones. J. Neuroendocrinol. 16, 577–588 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Engel, J., Schultens, H.A. & Schild, D. Small conductance potassium channels cause an activity-dependent spike frequency adaptation and make the transfer function of neurons logarithmic. Biophys. J. 76, 1310–1319 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Teshima, K., Kim, S.H. & Allen, C.N. Characterization of an apamin-sensitive potassium current in suprachiasmatic nucleus neurons. Neuroscience 120, 65–73 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Yen, J.C., Chan, J.Y. & Chan, S.H. Involvement of apamin-sensitive SK channels in spike frequency adaptation of neurons in nucleus tractus solitarii of the rat. J. Biomed. Sci. 6, 418–424 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Bond, C.T. et al. Small conductance Ca2+-activated K+ channel knock-out mice reveal the identity of calcium-dependent afterhyperpolarization currents. J. Neurosci. 24, 5301–5306 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Blank, T., Nijholt, I., Kye, M.J. & Spiess, J. Small conductance Ca2+-activated K+ channels as targets of CNS drug development. Curr. Drug Targets CNS Neurol. Disord. 3, 161–167 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Faber, E.S. & Sah, P. Physiological role of calcium-activated potassium currents in the rat lateral amygdala. J. Neurosci. 22, 1618–1628 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cui, J., Cox, D.H. & Aldrich, R.W. Intrinsic voltage dependence and Ca2+ regulation of mslo large conductance Ca-activated K+ channels. J. Gen. Physiol. 109, 647–673 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sanchez, M. & McManus, O.B. Paxilline inhibition of the alpha-subunit of the high-conductance calcium-activated potassium channel. Neuropharmacology 35, 963–968 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Hu, H. et al. Presynaptic Ca2+-activated K+ channels in glutamatergic hippocampal terminals and their role in spike repolarization and regulation of transmitter release. J. Neurosci. 21, 9585–9597 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Swensen, A.M. & Bean, B.P. Ionic mechanisms of burst firing in dissociated Purkinje neurons. J. Neurosci. 23, 9650–9663 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shao, L.R., Halvorsrud, R., Borg-Graham, L. & Storm, J.F. The role of BK-type Ca2+-dependent K+ channels in spike broadening during repetitive firing in rat hippocampal pyramidal cells. J. Physiol. (Lond.) 521, 135–146 (1999).

    Article  CAS  Google Scholar 

  20. Faber, E.S. & Sah, P. Ca2+-activated K+ (BK) channel inactivation contributes to spike broadening during repetitive firing in the rat lateral amygdala. J. Physiol. (Lond.) 552, 483–497 (2003).

    Article  CAS  Google Scholar 

  21. Reinhart, P.H., Chung, S. & Levitan, I.B. A family of calcium-dependent potassium channels from rat brain. Neuron 2, 1031–1041 (1989).

    Article  CAS  PubMed  Google Scholar 

  22. Wang, G. & Lemos, J.R. Tetrandrine blocks a slow, large-conductance, Ca(2+)-activated potassium channel besides inhibiting a non-inactivating Ca2+ current in isolated nerve terminals of the rat neurohypophysis. Pflugers Arch. 421, 558–565 (1992).

    Article  CAS  PubMed  Google Scholar 

  23. Meera, P., Wallner, M. & Toro, L. A neuronal beta subunit (KCNMB4) makes the large conductance, voltage- and Ca2+-activated K+ channel resistant to charybdotoxin and iberiotoxin. Proc. Natl. Acad. Sci. USA 97, 5562–5567 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lippiat, J.D., Standen, N.B., Harrow, I.D., Phillips, S.C. & Davies, N.W. Properties of BK(Ca) channels formed by bicistronic expression of hSloalpha and beta1–4 subunits in HEK293 cells. J. Membr. Biol. 192, 141–148 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Behrens, R. et al. hKCNMB3 and hKCNMB4, cloning and characterization of two members of the large-conductance calcium-activated potassium channel beta subunit family. FEBS Lett. 474, 99–106 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Weiger, T.M. et al. A novel nervous system beta subunit that downregulates human large conductance calcium-dependent potassium channels. J. Neurosci. 20, 3563–3570 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Brenner, R., Jegla, T.J., Wickenden, A., Liu, Y. & Aldrich, R.W. Cloning and functional characterization of novel large conductance calcium-activated potassium channel beta subunits, hKCNMB3 and hKCNMB4. J. Biol. Chem. 275, 6453–6461 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Ha, T.S., Heo, M.S. & Park, C.S. Functional effects of auxiliary beta4-subunit on rat large-conductance Ca(2+)-activated K(+) channel. Biophys. J. 86, 2871–2882 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sah, P. Ca(2+)-activated K+ currents in neurones: types, physiological roles and modulation. Trends Neurosci. 19, 150–154 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Williamson, P.D. & Engel, J. in Epilepsy: a Comprehensive Textbook (eds. Engel, J. & Pedley, T.A.) 557–566 (Lippincott-Raven, Philadelphia, 1997).

    Google Scholar 

  31. Tian, L., Knaus, H.G. & Shipston, M.J. Glucocorticoid regulation of calcium-activated potassium channels mediated by serine/threonine protein phosphatase. J. Biol. Chem. 273, 13531–13536 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Bielefeldt, K. & Jackson, M.B. A calcium-activated potassium channel causes frequency-dependent action-potential failures in a mammalian nerve terminal. J. Neurophysiol. 70, 284–298 (1993).

    Article  CAS  PubMed  Google Scholar 

  33. Nadler, J.V. The recurrent mossy fiber pathway of the epileptic brain. Neurochem. Res. 28, 1649–1658 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Heinemann, U. et al. The dentate gyrus as a regulated gate for the propagation of epileptiform activity. Epilepsy Res. Suppl. 7, 273–280 (1992).

    CAS  PubMed  Google Scholar 

  35. Sah, P. & Faber, E.S. Channels underlying neuronal calcium-activated potassium currents. Prog. Neurobiol. 66, 345–353 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Rudy, B. & McBain, C.J. Kv3 channels: voltage-gated K+ channels designed for high-frequency repetitive firing. Trends Neurosci. 24, 517–526 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Lau, D. et al. Impaired fast-spiking, suppressed cortical inhibition, and increased susceptibility to seizures in mice lacking Kv3.2 K+ channel proteins. J. Neurosci. 20, 9071–9085 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Juhng, K.N. et al. Induction of seizures by the potent K+ channel-blocking scorpion venom peptide toxins tityustoxin-K(alpha) and pandinustoxin-K(alpha). Epilepsy Res. 34, 177–186 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Jin, W., Sugaya, A., Tsuda, T., Ohguchi, H. & Sugaya, E. Relationship between large conductance calcium-activated potassium channel and bursting activity. Brain Res. 860, 21–28 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Du, W. et al. Calcium-sensitive potassium channelopathy in human epilepsy and paroxysmal movement disorder. Nat. Genet. 37, 733–738 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Kamal, A., Artola, A., Biessels, G.J., Gispen, W.H. & Ramakers, G.M. Increased spike broadening and slow afterhyperpolarization in CA1 pyramidal cells of streptozotocin-induced diabetic rats. Neuroscience 118, 577–583 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Mody, I., Kohr, G., Otis, T.S. & Staley, K.J. The electrophysiology of dentate gyrus granule cells in whole-cell recordings. Epilepsy Res. Suppl. 7, 159–168 (1992).

    CAS  PubMed  Google Scholar 

  43. Henze, D.A., Wittner, L. & Buzsaki, G. Single granule cells reliably discharge targets in the hippocampal CA3 network in vivo. Nat. Neurosci. 5, 790–795 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Mori, M., Abegg, M.H., Gahwiler, B.H. & Gerber, U. A frequency-dependent switch from inhibition to excitation in a hippocampal unitary circuit. Nature 431, 453–456 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Jung, M.W. & McNaughton, B.L. Spatial selectivity of unit activity in the hippocampal granular layer. Hippocampus 3, 165–182 (1993).

    Article  CAS  PubMed  Google Scholar 

  46. Kobayashi, M. & Buckmaster, P.S. Reduced inhibition of dentate granule cells in a model of temporal lobe epilepsy. J. Neurosci. 23, 2440–2452 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mott, D.D., Xie, C.W., Wilson, W.A., Swartzwelder, H.S. & Lewis, D.V. GABAB autoreceptors mediate activity-dependent disinhibition and enhance signal transmission in the dentate gyrus. J. Neurophysiol. 69, 674–691 (1993).

    Article  CAS  PubMed  Google Scholar 

  48. Strassle, B.W., Menegola, M., Rhodes, K.J. & Trimmer, J.S. Light and electron microscopic analysis of KChIP and Kv4 localization in rat cerebellar granule cells. J. Comp. Neurol. 484, 144–155 (2005).

    Article  PubMed  Google Scholar 

  49. Moyer, J.R., Jr . & Brown, T.H. Methods for whole-cell recording from visually preselected neurons of perirhinal cortex in brain slices from young and aging rats. J. Neurosci. Methods 86, 35–54 (1998).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Wiler for technical assistance and B.S. Rothberg for critical reading of the manuscript. This work was supported by US National Institutes of Health grants NS29709 and HD24064 to J.L.N., American Heart Association grant 02250724 to Q.H.C. and a University of Texas Health Science Center Executive Research Committee grant to R.B. R.W.A. is an investigator with the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Robert Brenner or Richard W Aldrich.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Tissue distribution of β4 gene expression. (PDF 195 kb)

Supplementary Fig. 2

Effect of SK channel block on firing properties during a 300 pA, 900 ms current injection utilizing UCL1684. (PDF 157 kb)

Supplementary Video 1

Spontaneous limbic seizure in BK β4−/− mouse. (MOV 2653 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brenner, R., Chen, Q., Vilaythong, A. et al. BK channel β4 subunit reduces dentate gyrus excitability and protects against temporal lobe seizures. Nat Neurosci 8, 1752–1759 (2005). https://doi.org/10.1038/nn1573

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1573

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing