Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Induction of sharp wave–ripple complexes in vitro and reorganization of hippocampal networks

Abstract

Hippocampal sharp wave–ripple complexes (SPW-Rs) occur during slow-wave sleep and behavioral immobility and are thought to represent stored information that is transferred to the neocortex during memory consolidation. Here we show that stimuli that induce long-term potentiation (LTP), a neurophysiological correlate of learning and memory, can lead to the generation of SPW-Rs in rat hippocampal slices. The induced SPW-Rs have properties that are identical to spontaneously generated SPW-Rs: they originate in CA3, propagate to CA1 and subiculum and require AMPA/kainate receptors. Their induction is dependent on NMDA receptors and involves changes in interactions between clusters of neurons in the CA3 network. Their expression is blocked by low-frequency stimulation but not by NMDA receptor antagonists. These data indicate that induction of LTP in the recurrent CA3 network may facilitate the generation of SPW-Rs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Recurrent stimulation induces SPW-Rs in area CA3.
Figure 2: Sample recording of HFS-induced SPW-Rs.
Figure 3: Origin of HFS-induced SPW-Rs.
Figure 4: Stimulation dependence and pharmacological properties of SPW-Rs.
Figure 5: Facilitated SPW-R induction in the presence of a physiological concentration of extracellular Mg2+.
Figure 6: Different types of changes in neuronal behavior during evolvement of SPW-Rs.
Figure 7: Stimulus-specific cell response in area CA3 during HFS-induced SPW-R activity.

Similar content being viewed by others

References

  1. Squire, L.R. Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychol. Rev. 99, 195–221 (1992).

    Article  CAS  Google Scholar 

  2. Wiltgen, B.J., Brown, R.A., Talton, L.E. & Silva, A.J. New circuits for old memories: the role of the neocortex in consolidation. Neuron 44, 101–108 (2004).

    Article  CAS  Google Scholar 

  3. Buzsaki, G. Two-stage model of memory trace formation: a role for “noisy” brain states. Neuroscience 31, 551–570 (1989).

    Article  CAS  Google Scholar 

  4. Buzsáki, G. Memory consolidation during sleep: a neurophysiological perspective. J. Sleep Res. 7, 17–23 (1998).

    Article  Google Scholar 

  5. Buzsaki, G., Leung, L.W. & Vanderwolf, C.H. Cellular bases of hippocampal EEG in the behaving rat. Brain Res. 287, 139–171 (1983).

    Article  CAS  Google Scholar 

  6. Bliss, T.V.P. & Lømo, T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J. Physiol. (Lond.) 232, 331–356 (1973).

    Article  CAS  Google Scholar 

  7. Dunwiddie, T. & Lynch, G. Long-term potentiation and depression of synaptic responses in the rat hippocampus: Localization and frequency dependency. J. Physiol. (Lond.) 276, 353–367 (1978).

    Article  CAS  Google Scholar 

  8. Martin, S.J. & Morris, R.G. New life in an old idea: the synaptic plasticity and memory hypothesis revisited. Hippocampus 12, 609–636 (2002).

    Article  CAS  Google Scholar 

  9. Kandel, E.R. The molecular biology of memory storage: a dialogue between genes and synapses. Science 294, 1030–1038 (2001).

    Article  CAS  Google Scholar 

  10. Harris, E.W., Ganong, A.H. & Cotman, C.W. Long-term potentiation in the hippocampus involves activation of N-methyl-D-aspartate receptors. Brain Res. 323, 132–137 (1984).

    Article  CAS  Google Scholar 

  11. Bliss, T.V.P. & Collingridge, G.L. A synaptic model of memory: Long-term potentiation in the hippocampus. Nature 361, 31–39 (1993).

    Article  CAS  Google Scholar 

  12. Zalutsky, R.A. & Nicoll, R.A. Comparison of two forms of long-term potentiation in single hippocampal neurons. Science 248, 1619–1624 (1990).

    Article  CAS  Google Scholar 

  13. Kann, O., Schuchmann, S., Buchheim, K. & Heinemann, U. Coupling of neuronal activity and mitochondrial metabolism as revealed by nad(p)h fluorescence signals in organotypic hippocampal slice cultures of the rat. Neuroscience 119, 87–100 (2003).

    Article  CAS  Google Scholar 

  14. Papatheodoropoulos, C. & Kostopoulos, G. Spontaneous, low frequency (approximately 2–3 Hz) field activity generated in rat ventral hippocampal slices perfused with normal medium. Brain Res. Bull. 57, 187–193 (2002).

    Article  Google Scholar 

  15. Maier, N., Nimmrich, V. & Draguhn, A. Cellular and network mechanisms underlying spontaneous sharp wave-ripple complexes in mouse hippocampal slices. J. Physiol. (Lond.) 550, 873–887 (2003).

    Article  CAS  Google Scholar 

  16. Colgin, L.L., Kubota, D., Jia, Y., Rex, C.S. & Lynch, G. Long-term potentiation is impaired in rat hippocampal slices that produce spontaneous sharp waves. J. Physiol. (Lond.) 558, 953–961 (2004).

    Article  CAS  Google Scholar 

  17. Colgin, L.L., Jia, Y., Sabatier, J.M. & Lynch, G. Blockade of NMDA receptors enhances spontaneous sharp waves in rat hippocampal slices. Neurosci. Lett. 385, 46–51 (2005).

    Article  CAS  Google Scholar 

  18. Collingridge, G.L., Kehl, S.J. & McLennan, H. Excitatory amino acids in synaptic transmission in the Schaffer collateral-commissural pathway of the rat hippocampus. J. Physiol. (Lond.) 334, 33–46 (1983).

    Article  CAS  Google Scholar 

  19. Bear, M.F. & Abraham, W.C. Long-term depression in hippocampus. Annu. Rev. Neurosci. 19, 437–462 (1996).

    Article  CAS  Google Scholar 

  20. Malenka, R.C. & Bear, M.F. LTP and LTD: an embarrassment of riches. Neuron 44, 5–21 (2004).

    Article  CAS  Google Scholar 

  21. Windmuller, O. et al. Ion changes in spreading ischaemia induce rat middle cerebral artery constriction in the absence of NO. Brain 128, 2042–2051 (2005).

    Article  Google Scholar 

  22. Dudek, S.M. & Bear, M.F. Bidirectional long-term modification of synaptic effectiveness in the adult and immature hippocampus. J. Neurosci. 13, 2910–2918 (1993).

    Article  CAS  Google Scholar 

  23. Moser, M.B. & Moser, E.I. Pretraining and the function of hippocampal long-term potentiation. Neuron 26, 559–561 (2000).

    Article  CAS  Google Scholar 

  24. Amaral, D.G. & Witter, M.P. The three-dimensional organization of the hippocampal formation: A review of anatomical data. Neuroscience 31, 571–591 (1989).

    Article  CAS  Google Scholar 

  25. Amaral, D.G. & Witter, M.P. The hippocampal formation. in The Rat Nervous System (ed. Paxinos, G.) 443–494 (Academic, New York, 1995).

    Google Scholar 

  26. Bragdon, A.C., Taylor, D.M. & Wilson, W.A. Potassium-induced epileptiform activity in area CA3 varies markedly along the septotemporal axis of the rat hippocampus. Brain Res. 378, 169–173 (1986).

    Article  CAS  Google Scholar 

  27. Ashton, D., Van Reempts, J., Haseldonckx, M. & Willems, R. Dorsal-ventral gradient in vulnerability of CA1 hippocampus to ischemia: A combined histological and electrophysiological study. Brain Res. 487, 368–372 (1989).

    Article  CAS  Google Scholar 

  28. Wong, R.K.S., Traub, R.D. & Miles, R. Cellular basis of neuronal synchrony in epilepsy. Adv. Neurol. 44, 583–592 (1986).

    CAS  PubMed  Google Scholar 

  29. Johnston, D. & Brown, T.H. The synaptic nature of the paroxysmal depolarizing shift in hippocampal neurons. Ann. Neurol. 16 (Suppl.), S65–S71 (1984).

    Article  Google Scholar 

  30. Bragin, A., Engel, J., Jr ., Wilson, C.L., Fried, I. & Mathern, G.W. Hippocampal and entorhinal cortex high-frequency oscillations (100–500 Hz) in human epileptic brain and in kainic acid-treated rats with chronic seizures. Epilepsia 40, 127–137 (1999).

    Article  CAS  Google Scholar 

  31. Fricker, D. & Miles, R. EPSP amplification and the precision of spike timing in hippocampal neurons. Neuron 28, 559–569 (2000).

    Article  CAS  Google Scholar 

  32. Axmacher, N. & Miles, R. Intrinsic cellular currents and the temporal precision of EPSP-action potential coupling in CA1 pyramidal cells. J. Physiol. (Lond.) 555, 713–725 (2004).

    Article  CAS  Google Scholar 

  33. Dudek, F.E., Snow, R.W. & Taylor, C.P. Role of electrical interactions in synchronization of epileptiform bursts. Adv. Neurol. 44, 593–617 (1986).

    CAS  PubMed  Google Scholar 

  34. Draguhn, A., Traub, R.D., Schmitz, D. & Jefferys, J.G.R. Electrical coupling underlies high-frequency oscillations in the hippocampus in vitro. Nature 394, 189–192 (1998).

    Article  CAS  Google Scholar 

  35. Schmitz, D. et al. Axo-axonal coupling: A novel mechanism for ultrafast neuronal communication. Neuron 31, 831–840 (2001).

    Article  CAS  Google Scholar 

  36. Miles, R. & Wong, R.K.S. Latent synaptic pathways revealed after tetanic stimulation in the hippocampus. Nature 329, 724–726 (1987).

    Article  CAS  Google Scholar 

  37. Hirase, H., Leinekugel, X., Czurko, A., Csicsvari, J. & Buzsaki, G. Firing rates of hippocampal neurons are preserved during subsequent sleep episodes and modified by novel awake experience. Proc. Natl. Acad. Sci. USA 98, 9386–9390 (2001).

    Article  CAS  Google Scholar 

  38. King, C., Henze, D.A., Leinekugel, X. & Buzsaki, G. Hebbian modification of a hippocampal population pattern in the rat. J. Physiol. (Lond.) 521, 159–167 (1999).

    Article  CAS  Google Scholar 

  39. Turrigiano, G.G. & Nelson, S.B. Hebb and homeostasis in neuronal plasticity. Curr. Opin. Neurobiol. 10, 358–364 (2000).

    Article  CAS  Google Scholar 

  40. Buzsaki, G. et al. Homeostatic maintenance of neuronal excitability by burst discharges in vivo. Cereb. Cortex 12, 893–899 (2002).

    Article  Google Scholar 

  41. Dragoi, G., Harris, K.D. & Buzsaki, G. Place representation within hippocampal networks is modified by long-term potentiation. Neuron 39, 843–853 (2003).

    Article  CAS  Google Scholar 

  42. Royer, S. & Pare, D. Conservation of total synaptic weight through balanced synaptic depression and potentiation. Nature 422, 518–522 (2003).

    Article  CAS  Google Scholar 

  43. Nadel, L. & Moscovitch, M. Hippocampal contributions to cortical plasticity. Neuropharmacology 37, 431–439 (1998).

    Article  CAS  Google Scholar 

  44. Squire, L.R. & Alvarez, P. Retrograde amnesia and memory consolidation: a neurobiological perspective. Curr. Opin. Neurobiol. 5, 169–177 (1995).

    Article  CAS  Google Scholar 

  45. Buzsáki, G., Haas, H.L. & Anderson, E.G. Long-term potentiation induced by physiologically relevant stimulus patterns. Brain Res. 435, 331–333 (1987).

    Article  Google Scholar 

  46. Kudrimoti, H.S., Barnes, C.A. & McNaughton, B.L. Reactivation of hippocampal cell assemblies: effects of behavioral state, experience, and EEG dynamics. J. Neurosci. 19, 4090–4101 (1999).

    Article  CAS  Google Scholar 

  47. Ponomarenko, A.A., Lin, J.S., Selbach, O. & Haas, H.L. Temporal pattern of hippocampal high-frequency oscillations during sleep after stimulant-evoked waking. Neuroscience 121, 759–769 (2003).

    Article  CAS  Google Scholar 

  48. Buzsaki, G. Long-term changes of hippocampal sharp-waves following high frequency afferent activation. Brain Res. 300, 179–182 (1984).

    Article  CAS  Google Scholar 

  49. Heinemann, U. & Arens, J. Production and calibration of ion-sensitive microelectrodes. in Practical Electrophysiological Methods: a Guide for In Vitro Studies in Vertebrate Neurobiology (eds. Grantyn, R. & Kettenmann, H.) 206–212 (Wiley-Liss, New York, 1992).

    Google Scholar 

Download references

Acknowledgements

This research was supported by the Sonderforschungsbereich 515. We are grateful for discussions with M.J. Gutnick and D. Schmitz, and for technical assistance and the development of data analysis tools by H. Siegmund and H.J. Gabriel. We acknowledge participation of N. Maggio in some of the recordings in dorsal hippocampal slices.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe Heinemann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Spontaneous SPW-R activity recorded in the CA3 region. (PDF 354 kb)

Supplementary Fig. 2

SPW-R induction parallels induction of LTP in area CA3. (PDF 99 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Behrens, C., van den Boom, L., de Hoz, L. et al. Induction of sharp wave–ripple complexes in vitro and reorganization of hippocampal networks. Nat Neurosci 8, 1560–1567 (2005). https://doi.org/10.1038/nn1571

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1571

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing