Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dynamics of excitation and inhibition underlying stimulus selectivity in rat somatosensory cortex

Abstract

Neurons in sensory systems respond to stimuli within their receptive fields, but the magnitude of the response depends on specific stimulus features. In the rodent whisker system, the response magnitude to the deflection of a particular whisker is, in most cells, dependent on the direction of deflection. Here we use in vivo intracellular recordings from thalamorecipient neurons in layers 3 and 4 of the rat barrel cortex to elucidate the dynamics of the synaptic inputs underlying direction selectivity. We show that cells are direction selective despite a broadly tuned excitatory and inhibitory synaptic input. Selectivity emerges from a direction-dependent temporal shift of excitation relative to inhibition. For preferred direction deflections, excitation precedes inhibition, but as the direction diverges from the preferred, this separation decreases. Our results illustrate a mechanism by which the timing of the synaptic inputs, and not their relative peak amplitudes, primarily determine feature selectivity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Direction selectivity in layer 4 barrel neurons.
Figure 2: Excitatory and inhibitory conductances underlying the synaptic responses.
Figure 3: Timing of excitatory and inhibitory conductances as a function of direction.
Figure 4: Dynamics of GE and GI.
Figure 5: Population values.

Similar content being viewed by others

References

  1. Monier, C., Chavane, F., Baudot, P., Graham, L.J. & Fregnac, Y. Orientation and direction selectivity of synaptic inputs in visual cortical neurons: a diversity of combinations produces spike tuning. Neuron 37, 663–680 (2003).

    Article  CAS  Google Scholar 

  2. Schummers, J., Marino, J. & Sur, M. Synaptic integration by V1 neurons depends on location within the orientation map. Neuron 36, 969–978 (2002).

    Article  CAS  Google Scholar 

  3. Wehr, M. & Zador, A.M. Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex. Nature 426, 442–446 (2003).

    Article  CAS  Google Scholar 

  4. Bruno, R.M. & Simons, D.J. Feedforward mechanisms of excitatory and inhibitory cortical receptive fields. J. Neurosci. 22, 10966–10975 (2002).

    Article  CAS  Google Scholar 

  5. Wilent, W.B. & Contreras, D. Synaptic responses to whisker deflections in rat barrel cortex as a function of cortical layer and stimulus intensity. J. Neurosci. 24, 3985–3998 (2004).

    Article  CAS  Google Scholar 

  6. Miller, K.D., Pinto, D.J. & Simons, D.J. Processing in layer 4 of the neocortical circuit: new insights from visual and somatosensory cortex. Curr. Opin. Neurobiol. 11, 488–497 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Douglas, R.J. & Martin, K.A. Neuronal circuits of the neocortex. Annu. Rev. Neurosci. 27, 419–451 (2004).

    Article  CAS  Google Scholar 

  8. Simons, D.J. & Carvell, G.E. Thalamocortical response transformation in the rat vibrissa/barrel system. J. Neurophysiol. 61, 311–330 (1989).

    Article  CAS  Google Scholar 

  9. Lichtenstein, S.H., Carvell, G.E. & Simons, D.J. Responses of rat trigeminal ganglion neurons to movements of vibrissae in different directions. Somatosens. Mot. Res. 7, 47–65 (1990).

    Article  CAS  Google Scholar 

  10. Mountcastle, V.B. Modality and topographic properties of single neurons of cat's somatic sensory cortex. J. Neurophysiol. 20, 408–434 (1957).

    Article  CAS  PubMed  Google Scholar 

  11. Bruno, R.M., Khatri, V., Land, P.W. & Simons, D.J. Thalamocortical angular tuning domains within individual barrels of rat somatosensory cortex. J. Neurosci. 23, 9565–9574 (2003).

    Article  CAS  Google Scholar 

  12. Staiger, J.F. et al. Functional diversity of layer IV spiny neurons in rat somatosensory cortex: quantitative morphology of electrophysiologically characterized and biocytin labeled cells. Cereb. Cortex 14, 690–701 (2004).

    Article  Google Scholar 

  13. Petersen, C.C. & Sakmann, B. The excitatory neuronal network of rat layer 4 barrel cortex. J. Neurosci. 20, 7579–7586 (2000).

    Article  CAS  Google Scholar 

  14. Jensen, K.F. & Killackey, H.P. Terminal arbors of axons projecting to the somatosensory cortex of the adult rat. I. The normal morphology of specific thalamocortical afferents. J. Neurosci. 7, 3529–3543 (1987).

    Article  CAS  Google Scholar 

  15. Feldmeyer, D., Egger, V., Lubke, J. & Sakmann, B. Reliable synaptic connections between pairs of excitatory layer 4 neurones within a single 'barrel' of developing rat somatosensory cortex. J. Physiol. (Lond.) 521, 169–190 (1999).

    Article  CAS  Google Scholar 

  16. Higley, M.J. & Contreras, D. Nonlinear integration of sensory responses in the rat barrel cortex: an intracellular study in vivo. J. Neurosci. 23, 10190–10200 (2003).

    Article  CAS  Google Scholar 

  17. Simons, D.J., Carvell, G.E., Hershey, A.E. & Bryant, D.P. Responses of barrel cortex neurons in awake rats and effects of urethane anesthesia. Exp. Brain Res. 91, 259–272 (1992).

    Article  CAS  Google Scholar 

  18. Carandini, M. & Ferster, D. Membrane potential and firing rate in cat primary visual cortex. J. Neurosci. 20, 470–484 (2000).

    Article  CAS  Google Scholar 

  19. Wilent, W.B. & Contreras, D. Stimulus-dependent changes in spike threshold enhance feature selectivity in rat barrel cortex neurons. J. Neurosci. 25, 2983–2991 (2005).

    Article  CAS  Google Scholar 

  20. Connors, B.W. & Prince, D.A. Effects of local anesthetic QX-314 on the membrane properties of hippocampal pyramidal neurons. J. Pharmacol. Exp. Ther. 220, 476–481 (1982).

    CAS  Google Scholar 

  21. Mulle, C., Steriade, M. & Deschenes, M. The effects of QX314 on thalamic neurons. Brain Res. 333, 350–354 (1985).

    Article  CAS  Google Scholar 

  22. Martinez, L.M., Alonso, J.M., Reid, R.C. & Hirsch, J.A. Laminar processing of stimulus orientation in cat visual cortex. J. Physiol. (Lond.) 540, 321–333 (2002).

    Article  CAS  Google Scholar 

  23. Tan, A.Y., Zhang, L.I., Merzenich, M.M. & Schreiner, C.E. Tone-evoked excitatory and inhibitory synaptic conductances of primary auditory cortex neurons. J. Neurophysiol. 92, 630–643 (2004).

    Article  Google Scholar 

  24. Hodgkin, A.L. & Huxley, A.F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (Lond.) 117, 500–544 (1952).

    Article  CAS  Google Scholar 

  25. Johnston, D. & Wu, S.M.S. Foundations of Cellular Neurophysiology (MIT Press, Cambridge, Massachusetts, 1996).

    Google Scholar 

  26. Pinto, D.J., Hartings, J.A., Brumberg, J.C. & Simons, D.J. Cortical damping: analysis of thalamocortical response transformations in rodent barrel cortex. Cereb. Cortex 13, 33–44 (2003).

    Article  Google Scholar 

  27. Pinto, D.J., Brumberg, J.C. & Simons, D.J. Circuit dynamics and coding strategies in rodent somatosensory cortex. J. Neurophysiol. 83, 1158–1166 (2000).

    Article  CAS  Google Scholar 

  28. Shoykhet, M., Doherty, D. & Simons, D.J. Coding of deflection velocity and amplitude by whisker primary afferent neurons: implications for higher level processing. Somatosens. Mot. Res. 17, 171–180 (2000).

    Article  CAS  Google Scholar 

  29. Zucker, E. & Welker, W.I. Coding of somatic sensory input by vibrissae neurons in the rat's trigeminal ganglion. Brain Res. 12, 138–156 (1969).

    Article  CAS  Google Scholar 

  30. Timofeeva, E., Merette, C., Emond, C., Lavallee, P. & Deschenes, M. A map of angular tuning preference in thalamic barreloids. J. Neurosci. 23, 10717–10723 (2003).

    Article  CAS  Google Scholar 

  31. Deschenes, M., Timofeeva, E. & Lavallee, P. The relay of high-frequency sensory signals in the Whisker-to-barreloid pathway. J. Neurosci. 23, 6778–6787 (2003).

    Article  CAS  Google Scholar 

  32. Castro-Alamancos, M.A. Properties of primary sensory (lemniscal) synapses in the ventrobasal thalamus and the relay of high-frequency sensory inputs. J. Neurophysiol. 87, 946–953 (2002).

    Article  Google Scholar 

  33. Veinante, P. & Deschenes, M. Single- and multi-whisker channels in the ascending projections from the principal trigeminal nucleus in the rat. J. Neurosci. 19, 5085–5095 (1999).

    Article  CAS  Google Scholar 

  34. Williams, M.N., Zahm, D.S. & Jacquin, M.F. Differential foci and synaptic organization of the principal and spinal trigeminal projections to the thalamus in the rat. Eur. J. Neurosci. 6, 429–453 (1994).

    Article  CAS  Google Scholar 

  35. Minnery, B.S., Bruno, R.M. & Simons, D.J. Response transformation and receptive-field synthesis in the lemniscal trigeminothalamic circuit. J. Neurophysiol. 90, 1556–1570 (2003).

    Article  Google Scholar 

  36. Temereanca, S. & Simons, D.J. Local field potentials and the encoding of whisker deflections by population firing synchrony in thalamic barreloids. J. Neurophysiol. 89, 2137–2145 (2003).

    Article  Google Scholar 

  37. Swadlow, H.A. & Gusev, A.G. The influence of single VB thalamocortical impulses on barrel columns of rabbit somatosensory cortex. J. Neurophysiol. 83, 2802–2813 (2000).

    Article  CAS  Google Scholar 

  38. Mountcastle, V.B. Introduction. Computation in cortical columns. Cereb. Cortex 13, 2–4 (2003).

    Article  Google Scholar 

  39. Swadlow, H.A., Gusev, A.G. & Bezdudnaya, T. Activation of a cortical column by a thalamocortical impulse. J. Neurosci. 22, 7766–7773 (2002).

    Article  CAS  Google Scholar 

  40. Moore, C.I. & Nelson, S.B. Spatio-temporal subthreshold receptive fields in the vibrissa representation of rat primary somatosensory cortex. J. Neurophysiol. 80, 2882–2892 (1998).

    Article  CAS  Google Scholar 

  41. Lee, S.H. & Simons, D.J. Angular tuning and velocity sensitivity in different neuron classes within layer 4 of rat barrel cortex. J. Neurophysiol. 91, 223–229 (2004).

    Article  Google Scholar 

  42. Leventhal, A.G., Wang, Y., Pu, M., Zhou, Y. & Ma, Y. GABA and its agonists improved visual cortical function in senescent monkeys. Science 300, 812–815 (2003).

    Article  CAS  Google Scholar 

  43. Schmolesky, M.T., Wang, Y., Pu, M. & Leventhal, A.G. Degradation of stimulus selectivity of visual cortical cells in senescent rhesus monkeys. Nat. Neurosci. 3, 384–390 (2000).

    Article  CAS  Google Scholar 

  44. Magee, J.C. & Cook, E.P. Somatic EPSP amplitude is independent of synapse location in hippocampal pyramidal neurons. Nat. Neurosci. 3, 895–903 (2000).

    Article  CAS  Google Scholar 

  45. Williams, S.R. & Stuart, G.J. Dependence of EPSP efficacy on synapse location in neocortical pyramidal neurons. Science 295, 1907–1910 (2002).

    Article  CAS  Google Scholar 

  46. Connors, B.W. & Gutnick, M.J. Intrinsic firing patterns of diverse neocortical neurons. Trends Neurosci. 13, 99–104 (1990).

    Article  CAS  Google Scholar 

  47. Contreras, D. Electrophysiological classes of neocortical neurons. Neural Netw. 17, 633–646 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank R. Traub for intellectual input throughout the preparation of this manuscript, E. Garcia de Yebenes for her technical assistance and A. Reid and J. Cardin for their useful comments. Sponsored by the Human Frontier Science Program Organization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Contreras.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Gsyn for example cell in Figure 1 recorded under control conditions without QX-314. (PDF 71 kb)

Supplementary Fig. 2

Additional example cell recorded with QX-314 as inFigures 3 and 4. (PDF 312 kb)

Supplementary Fig. 3

Stimulator movements for each direction. (PDF 117 kb)

Supplementary Methods (PDF 24 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilent, W., Contreras, D. Dynamics of excitation and inhibition underlying stimulus selectivity in rat somatosensory cortex. Nat Neurosci 8, 1364–1370 (2005). https://doi.org/10.1038/nn1545

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1545

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing