Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spatial compartmentalization and functional impact of conductance in pyramidal neurons

Abstract

Dendritic spikes signal synaptic integration at remote apical dendritic sites in neocortical pyramidal neurons in vitro. Do dendritic spikes have a salient signaling role under in vivo conditions, where neocortical pyramidal neurons are bombarded with synaptic input? In the present study, levels of synaptic conductance apparent during active network states in vivo were emulated in vitro. Pronounced enhancement of somatic or apical dendritic conductance was spatially compartmentalized and 'visible' over a dendritic length (200 μm) on the order of half the voltage length constant, as predicted by passive cable models. The spatial compartmentalization of conductance allowed independent subthreshold synaptic integration at axo-somatic and apical dendritic sites. Furthermore, spikes generated at distal apical dendritic sites efficiently propagated to the axon to initiate action potentials under high synaptic conductance states. The dendritic arborization and voltage-activated channel complement of rat neocortical pyramidal neurons are therefore optimized to allow distributed processing under realistic conductance states.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Compartmentalization of conductance in pyramidal neurons.
Figure 2: Conductance compartmentalization is independent of magnitude.
Figure 3: Impact of conductance on dendritic stimulated EPSPs.
Figure 4: Independence of distal dendritic synaptic integration.
Figure 5: Control of dendritic excitation by simulated synaptic bombardment.
Figure 6: Dendritic synaptic conductance controls action potential back-propagation.

Similar content being viewed by others

References

  1. Coombs, J.S., Curtis, D.R. & Eccles, J.C. The interpretation of spike potentials of motoneurones. J. Physiol. (Lond.) 139, 198–231 (1957).

    Article  CAS  Google Scholar 

  2. Stuart, G., Spruston, N., Sakmann, B. & Häusser, M. Action potential initiation and backpropagation in neurons of the mammalian CNS. Trends Neurosci. 20, 125–131. (1997).

    Article  CAS  Google Scholar 

  3. Rall, W. Theoretical significance of dendritic trees for neuronal input-output relations. in Neural Theory and Modeling (ed. Reiss, R.F.) 73–97 (Stanford Univ. Press, Palo–Alto, 1964).

    Google Scholar 

  4. Williams, S.R. & Stuart, G.J. Dependence of EPSP efficacy on synapse location in neocortical pyramidal neurons. Science 295, 1907–1910 (2002).

    Article  CAS  Google Scholar 

  5. Stuart, G. & Spruston, N. Determinants of voltage attenuation in neocortical pyramidal neuron dendrites. J. Neurosci. 18, 3501–3510 (1998).

    Article  CAS  Google Scholar 

  6. Berger, T., Larkum, M.E. & Luscher, H.R. High I(h) channel density in the distal apical dendrite of layer V pyramidal cells increases bidirectional attenuation of EPSPs. J. Neurophysiol. 85, 855–868 (2001).

    Article  CAS  Google Scholar 

  7. Williams, S.R. & Stuart, G.J. Site independence of EPSP time course is mediated by dendritic Ih in neocortical pyramidal neurons. J. Neurophysiol. 83, 3177–3182 (2000).

    Article  CAS  Google Scholar 

  8. Pare, D., Shink, E., Gaudreau, H., Destexhe, A. & Lang, E.J. Impact of spontaneous synaptic activity on the resting properties of cat neocortical pyramidal neurons In vivo. J. Neurophysiol. 79, 1450–1460 (1998).

    Article  CAS  Google Scholar 

  9. Destexhe, A., Rudolph, M. & Pare, D. The high-conductance state of neocortical neurons in vivo. Nat. Rev. Neurosci. 4, 739–751 (2003).

    Article  CAS  Google Scholar 

  10. Borg-Graham, L.J., Monier, C. & Fregnac, Y. Visual input evokes transient and strong shunting inhibition in visual cortical neurons. Nature 393, 369–373 (1998).

    Article  CAS  Google Scholar 

  11. Bernander, O., Douglas, R.J., Martin, K.A. & Koch, C. Synaptic background activity influences spatiotemporal integration in single pyramidal cells. Proc. Natl. Acad. Sci. USA 88, 11569–11573 (1991).

    Article  CAS  Google Scholar 

  12. Rudolph, M. & Destexhe, A. A fast-conducting, stochastic integrative mode for neocortical neurons in vivo. J. Neurosci. 23, 2466–2476 (2003).

    Article  CAS  Google Scholar 

  13. London, M. & Segev, I. Synaptic scaling in vitro and in vivo. Nat. Neurosci. 4, 853–855 (2001).

    Article  CAS  Google Scholar 

  14. Häusser, M., Spruston, N. & Stuart, G.J. Diversity and dynamics of dendritic signaling. Science 290, 739–744 (2000).

    Article  Google Scholar 

  15. Williams, S.R. & Stuart, G.J. Voltage- and site-dependent control of the somatic impact of dendritic IPSPs. J. Neurosci. 23, 7358–7367 (2003).

    Article  CAS  Google Scholar 

  16. Kim, H.G. & Connors, B.W. Apical dendrites of the neocortex: correlation between sodium- and calcium-dependent spiking and pyramidal cell morphology. J. Neurosci. 13, 5301–5311 (1993).

    Article  CAS  Google Scholar 

  17. Schiller, J., Major, G., Koester, H.J. & Schiller, Y. NMDA spikes in basal dendrites of cortical pyramidal neurons. Nature 404, 285–289 (2000).

    Article  CAS  Google Scholar 

  18. Larkum, M.E., Zhu, J.J. & Sakmann, B. Dendritic mechanisms underlying the coupling of the dendritic with the axonal action potential initiation zone of adult rat layer 5 pyramidal neurons. J. Physiol. (Lond.) 533, 447–466 (2001).

    Article  CAS  Google Scholar 

  19. Larkum, M.E. & Zhu, J.J. Signaling of layer 1 and whisker-evoked Ca2+ and Na+ action potentials in distal and terminal dendrites of rat neocortical pyramidal neurons in vitro and in vivo. J. Neurosci. 22, 6991–7005 (2002).

    Article  CAS  Google Scholar 

  20. Golding, N.L. & Spruston, N. Dendritic sodium spikes are variable triggers of axonal action potentials in hippocampal CA1 pyramidal neurons. Neuron 21, 1189–1200 (1998).

    Article  CAS  Google Scholar 

  21. Golding, N.L., Staff, N.P. & Spruston, N. Dendritic spikes as a mechanism for cooperative long-term potentiation. Nature 418, 326–331 (2002).

    Article  CAS  Google Scholar 

  22. Ariav, G., Polsky, A. & Schiller, J. Submillisecond precision of the input-output transformation function mediated by fast sodium dendritic spikes in basal dendrites of CA1 pyramidal neurons. J. Neurosci. 23, 7750–7758 (2003).

    Article  CAS  Google Scholar 

  23. Zhu, J.J. Maturation of layer 5 neocortical pyramidal neurons: amplifying salient layer 1 and layer 4 inputs by Ca2+ action potentials in adult rat tuft dendrites. J. Physiol. (Lond.) 526, 571–587 (2000).

    Article  CAS  Google Scholar 

  24. Rhodes, P.A. & Llinas, R.R. Apical tuft input efficacy in layer 5 pyramidal cells from rat visual cortex. J. Physiol. (Lond.) 536, 167–187 (2001).

    Article  CAS  Google Scholar 

  25. Mel, B.W. Synaptic integration in an excitable dendritic tree. J. Neurophysiol. 70, 1086–1101 (1993).

    Article  CAS  Google Scholar 

  26. Häusser, M. & Mel, B. Dendrites: bug or feature? Curr. Opin. Neurobiol. 13, 372–383 (2003).

    Article  Google Scholar 

  27. Poirazi, P., Brannon, T. & Mel, B.W. Pyramidal neuron as two-layer neural network. Neuron 37, 989–999 (2003).

    Article  CAS  Google Scholar 

  28. Williams, S.R. & Stuart, G.J. Role of dendritic synapse location in the control of action potential output. Trends Neurosci. 26, 147–154 (2003).

    Article  CAS  Google Scholar 

  29. Rall, W. Distinguishing theoretical synaptic potentials computed for different soma-dendritic distributions of synaptic input. J. Neurophysiol. 30, 1138–1168 (1967).

    Article  CAS  Google Scholar 

  30. Koch, C., Douglas, R. & Wehmeier, U. Visibility of synaptically induced conductance changes: theory and simulations of anatomically characterized cortical pyramidal cells. J. Neurosci. 10, 1728–1744 (1990).

    Article  CAS  Google Scholar 

  31. Harsch, A. & Robinson, H.P. Postsynaptic variability of firing in rat cortical neurons: the roles of input synchronization and synaptic NMDA receptor conductance. J. Neurosci. 20, 6181–6192 (2000).

    Article  CAS  Google Scholar 

  32. Shu, Y., Hasenstaub, A. & McCormick, D.A. Turning on and off recurrent balanced cortical activity. Nature 423, 288–293 (2003).

    Article  CAS  Google Scholar 

  33. Chance, F.S., Abbott, L.F. & Reyes, A.D. Gain modulation from background synaptic input. Neuron 35, 773–782 (2002).

    Article  CAS  Google Scholar 

  34. Wehr, M. & Zador, A.M. Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex. Nature 426, 442–446 (2003).

    Article  CAS  Google Scholar 

  35. Magee, J.C. & Johnston, D. A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons. Science 275, 209–213 (1997).

    Article  CAS  Google Scholar 

  36. Tsubokawa, H. & Ross, W.N. IPSPs modulate spike backpropagation and associated [Ca2+]i changes in the dendrites of hippocampal CA1 pyramidal neurons. J. Neurophysiol. 76, 2896–2906 (1996).

    Article  CAS  Google Scholar 

  37. Larkum, M.E., Zhu, J.J. & Sakmann, B. A new cellular mechanism for coupling inputs arriving at different cortical layers. Nature 398, 338–341 (1999).

    Article  CAS  Google Scholar 

  38. Stuart, G.J. & Häusser, M. Dendritic coincidence detection of EPSPs and action potentials. Nat. Neurosci. 4, 63–71 (2001).

    Article  CAS  Google Scholar 

  39. Larkman, A.U. Dendritic morphology of pyramidal neurones of the visual cortex of the rat: I. Branching patterns. J. Comp. Neurol. 306, 307–319 (1991).

    Article  CAS  Google Scholar 

  40. Colbert, C.M., Magee, J.C., Hoffman, D.A. & Johnston, D. Slow recovery from inactivation of Na+ channels underlies the activity-dependent attenuation of dendritic action potentials in hippocampal CA1 pyramidal neurons. J. Neurosci. 17, 6512–6521 (1997).

    Article  CAS  Google Scholar 

  41. Schaefer, A.T., Larkum, M.E., Sakmann, B. & Roth, A. Coincidence detection in pyramidal neurons is tuned by their dendritic branching pattern. J. Neurophysiol. 89, 3143–3154 (2003).

    Article  Google Scholar 

  42. Koch, C., Rapp, M. & Segev, I. A brief history of time (constants). Cereb. Cortex 6, 93–101 (1996).

    Article  CAS  Google Scholar 

  43. Salin, P.A. & Bullier, J. Corticocortical connections in the visual system: structure and function. Physiol. Rev. 75, 107–154 (1995).

    Article  CAS  Google Scholar 

  44. Cauller, L.J., Clancy, B. & Connors, B.W. Backward cortical projections to primary somatosensory cortex in rats extend long horizontal axons in layer I. J. Comp. Neurol. 390, 297–310 (1998).

    Article  CAS  Google Scholar 

  45. Waters, J., Larkum, M., Sakmann, B. & Helmchen, F. Supralinear Ca2+ influx into dendritic tufts of layer 2/3 neocortical pyramidal neurons in vitro and in vivo. J. Neurosci. 23, 8558–8567 (2003).

    Article  CAS  Google Scholar 

  46. Rapp, M., Yarom, Y. & Segev, I. Modeling back propagating action potential in weakly excitable dendrites of neocortical pyramidal cells. Proc. Natl. Acad. Sci. USA 93, 11985–11990 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I am grateful to S. Atkinson, L. Gentet, B. Khakh and L. Lagnado for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen R Williams.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Supplementary information

Supplementary Fig. 1

Control of apical dendritic spikes. (a) Quadruple somato-dendritic recording of dendritic spikes evoked by a threshold current step (green) under control (upper traces) and in the presence of a somatic conductance source (90 nS). (b) In conductance-insensitive neurons (n = 29) incremental increases of somatic conductance failed to alter the amplitude of dendritic spikes at site of generation (red), at proximal apical dendritic loci (blue) or the initiation of axonal action potentials (black). (c) In a conductance-sensitive neuron enhanced somatic conductance (90 nS) broke the link between dendritic spike generation and axonal action potential initiation. (d) Pooled data demonstrating the independence of dendritic spike generation, but the conductance-dependent disruption of axonal action potential firing (n = 16) in conductance-sensitive neurons. (GIF 34 kb)

Supplementary Fig. 2

Properties of conductance-sensitive and conductance-insensitive neurons. (a) In conductance-sensitive and -insensitive neurons enhanced somatic conductance (90 nS) decreased the somatic peak apparent input resistance to a similar degree. (b) Distribution of the maximal rate of rise of dendritic spikes recorded at distal (right data cluster) and proximal apical dendritic sites. (c) Pooled analysis describing the maximal rate of rise of dendritic spikes and somatic action potentials in the two classes of neurons (conductance-insensitive: site of generation 25.6 ± 2.1 Vs−1 (567 ± 13 μm), proximal-apical 68.0 ± 6.5 Vs−1 (250 ± 9 μm), soma 381.6 ± 9.1 Vs−1; conductance-sensitive: site of generation 17.7 ± 2.0 Vs−1, P < 0.005 (Students' T-test) (587 ± 17 μm), proximal-apical 34.3 ± 4.9 Vs−1, P < 0.001 (225 ± 12 μm), soma 370.1 ± 11.7 Vs−1 (not different)). (GIF 28 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, S. Spatial compartmentalization and functional impact of conductance in pyramidal neurons. Nat Neurosci 7, 961–967 (2004). https://doi.org/10.1038/nn1305

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1305

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing