Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Separate blue and green cone networks in the mammalian retina

This article has been updated

Abstract

The distinct absorbance spectra of the cone photopigments form the basis of color vision, but ultrastructural and physiological evidence shows that mammalian cones are electrically coupled. Coupling between cones of the same spectral type should average voltage noise in adjacent photoreceptors and improve the ability to resolve low-contrast spatial patterns. However, indiscriminate coupling between spectral types could compromise color vision by smearing chromatic information across channels. Here we show, by measuring the junctional conductance between green-green and blue-green cone pairs in slices from the dichromatic ground-squirrel retina, that green-green cone pairs are routinely coupled with an average conductance of 220 pS, whereas coupling is undetectable in blue-green cone pairs. Together with a lack of tracer coupling and the selective localization of connexin proteins, our results show that signals in blue and green cones are processed separately in the photoreceptor layer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of blue cones in a retinal slice.
Figure 2: Junctional conductance between pairs of green-green and blue-green cones.
Figure 3: Neurobiotin diffusion among green but not blue cones.
Figure 4: Connexin36 immunolabeling at the cone pedicles.
Figure 5: Absence of coupling between blue and green cones in the dark-adapted retina.

Similar content being viewed by others

Change history

  • 22 June 2004

    added erratum PDF to AOP PDF, placed footnote in article, corrected online details added to corrected v7/n7 issue PDF

Notes

  1. *Note: In the version of this article initially published online, the page range for reference 48 was listed incorrectly in the reference list. The correct page range should be 745—750. This error has been corrected for the HTML and print versions of the article.

References

  1. DeVries, S.H., Qi, X., Smith, R., Makous, W. & Sterling, P. Electrical coupling between mammalian cones. Curr. Biol. 12, 1900–1907 (2002).

    Article  CAS  Google Scholar 

  2. Baylor, D.A. & Hodgkin, A.L. Detection and resolution of visual stimuli by turtle photoreceptors. J. Physiol. (Lond.) 234, 163–198 (1973).

    Article  CAS  Google Scholar 

  3. Detwiler, P.B. & Hodgkin, A.L. Electrical coupling between cones in turtle retina. J. Physiol. (Lond.) 291, 75–100 (1979).

    Article  CAS  Google Scholar 

  4. Lamb, T.D. & Simon, E.J. The relation between intercellular coupling and electrical noise in turtle photoreceptors. J. Physiol. (Lond.) 263, 257–286 (1976).

    Article  CAS  Google Scholar 

  5. Campbell, F.W. & Gubisch, R.W. Optical quality of the human eye. J. Physiol. (Lond.) 186, 558–578 (1966).

    Article  CAS  Google Scholar 

  6. Roorda, A. & Williams, D.R. The arrangement of the three cone classes in the living human eye. Nature 397, 520–522 (1999).

    Article  CAS  Google Scholar 

  7. Hsu, A., Smith, R.G., Buchsbaum, G. & Sterling, P. Cost of cone coupling to trichromacy in primate fovea. J. Opt. Soc. Am. A 17, 635–640 (2000).

    Article  CAS  Google Scholar 

  8. Raviola, E. & Gilula, N.B. Gap junctions between photoreceptor cells in the vertebrate retina. Proc. Natl. Acad. Sci. USA 70, 1677–1681 (1973).

    Article  CAS  Google Scholar 

  9. Tsukamoto, Y., Masarachia, P., Schein, S.J. & Sterling, P. Gap junctions between the pedicles of macaque foveal cones. Vision Res. 32, 1809–1815 (1992).

    Article  CAS  Google Scholar 

  10. Herr, S., Klug, K., Sterling, P. & Schein, S. Inner S-cone bipolar cells provide all of the central elements for S cones in macaque retina. J. Comp. Neurol. 457, 185–201 (2003).

    Article  Google Scholar 

  11. Kolb, H., Goede, P., Roberts, S., McDermott, R. & Gouras, P. Uniqueness of the S-cone pedicle in the human retina and consequences for color processing. J. Comp. Neurol. 386, 443–460 (1997).

    Article  CAS  Google Scholar 

  12. Ahnelt, P., Keri, C. & Kolb, H. Identification of pedicles of putative blue-sensitive cones in the human retina. J. Comp. Neurol. 293, 39–53 (1990).

    Article  CAS  Google Scholar 

  13. Chatterjee, S. & Callaway, E.M. S-cone contributions to the magnocellular visual pathway in macaque monkey. Neuron 35, 1135–1146 (2002).

    Article  CAS  Google Scholar 

  14. De Monasterio, F.M. & Gouras, P. Functional properties of ganglion cells of the rhesus monkey retina. J. Physiol. (Lond.) 251, 167–195 (1975).

    Article  CAS  Google Scholar 

  15. Dacey, D.M. & Lee, B.B. The 'blue-on' opponent pathway in primate retina originates from a distinct bistratified ganglion cell type. Nature 367, 731–735 (1994).

    Article  CAS  Google Scholar 

  16. Lee, B.B., Martin, P.R. & Valberg, A. The physiological basis of heterochromatic flicker photometry demonstrated in the ganglion cells of the macaque retina. J. Physiol. (Lond.) 404, 323–347 (1988).

    Article  CAS  Google Scholar 

  17. Dacey, D.M., Lee, B.B., Stafford, D.K., Pokorny, J. & Smith, V.C. Horizontal cells of the primate retina: cone specificity without spectral opponency. Science 271, 656–659 (1996).

    Article  CAS  Google Scholar 

  18. Kryger, Z., Galli-Resta, L., Jacobs, G.H. & Reese, B.E. The topography of rod and cone photoreceptors in the retina of the ground squirrel. Vis. Neurosci. 15, 685–691 (1998).

    Article  CAS  Google Scholar 

  19. Vaney, D.I. Many diverse types of retinal neurons show tracer coupling when injected with biocytin or Neurobiotin. Neurosci. Lett. 125, 187–190 (1991).

    Article  CAS  Google Scholar 

  20. Mills, S.L. & Massey, S.C. A series of biotinylated tracers distinguishes three types of gap junction in retina. J. Neurosci. 20, 8629–8636 (2000).

    Article  CAS  Google Scholar 

  21. Bennett, M.V. et al. Gap junctions: new tools, new answers, new questions. Neuron 6, 305–320 (1991).

    Article  CAS  Google Scholar 

  22. Beyer, E.C., Paul D.L. & Goodenough D.A. Connexin family of gap junction proteins. J. Membr. Biol. 116, 187–194 (1990).

    Article  CAS  Google Scholar 

  23. O'Brien, J., al-Ubaidi, M.R. & Ripps, H. Connexin 35: a gap-junctional protein expressed preferentially in the skate retina. Mol. Biol. Cell 7, 233–243 (1996).

    Article  CAS  Google Scholar 

  24. Teubner, B. et al. Functional expression of the murine connexin 36 gene coding for a neuron-specific gap junctional protein. J. Membr. Biol. 176, 249–262 (2000).

    Article  CAS  Google Scholar 

  25. Feigenspan, A., Teubner, B., Willecke, K. & Weiler, R. Expression of neuronal connexin36 in AII amacrine cells of the mammalian retina. J. Neurosci. 21, 230–239 (2001).

    Article  CAS  Google Scholar 

  26. Mills, S.L., O'Brien, J.J., Li, W., O'Brien, J. & Massey, S.C. Rod pathways in the mammalian retina use connexin 36. J. Comp. Neurol. 436, 336–350 (2001).

    Article  CAS  Google Scholar 

  27. Deans, M.R., Volgyi, B., Goodenough, D.A., Bloomfield, S.A. & Paul, D.L. Connexin36 is essential for transmission of rod-mediated visual signals in the mammalian retina. Neuron 36, 703–712 (2002).

    Article  CAS  Google Scholar 

  28. Lee, E.J. et al. The immunocytochemical localization of connexin 36 at rod and cone gap junctions in the guinea pig retina. Eur. J. Neurosci. 18, 2925–2934 (2003).

    Article  Google Scholar 

  29. Feigenspan, A. et al. Expression of connexin36 in cone pedicles and OFF-cone bipolar cells of the mouse retina. J. Neurosci. 24, 3325–3334 (2004).

    Article  CAS  Google Scholar 

  30. Dizhoor, A.M. et al. Recoverin: a calcium sensitive activator of retinal rod guanylate cyclase. Science 251, 915–918 (1991).

    Article  CAS  Google Scholar 

  31. McGinnis, J.F., Stepanik, P.L., Jariangprasert, S. & Lerious, V. Functional significance of recoverin localization in multiple retina cell types. J. Neurosci. Res. 50, 487–495 (1997).

    Article  CAS  Google Scholar 

  32. Haverkamp, S., Grünert, U. & Wässle, H. Localization of kainate receptors at the cone pedicles of the primate retina. J. Comp. Neurol. 436, 471–486 (2001).

    Article  CAS  Google Scholar 

  33. Kraft, T.W. Photocurrents of cone photoreceptors of the golden-mantled ground squirrel. J. Physiol. (Lond.) 404, 199–213 (1988).

    Article  CAS  Google Scholar 

  34. Schneeweis, D.M. & Schnapf J.L. Photovoltage of rods and cones in the macaque retina. Science 268, 1053–1056 (1995).

    Article  CAS  Google Scholar 

  35. Williams, D.R., MacLeod, D.I. & Hayhoe, M.M. Punctate sensitivity of the blue-sensitive mechanism. Vision Res. 21, 1357–1375 (1981).

    Article  CAS  Google Scholar 

  36. De Monasterio, F.M., Schein, S.J. & McCrane, E.P. Staining of blue-sensitive cones of the macaque retina by a fluorescent dye. Science 213, 1278–1281 (1981).

    Article  CAS  Google Scholar 

  37. Szél, A., Diamantstein, T. & Rohlich, P. Identification of the blue-sensitive cones in the mammalian retina by anti-visual pigment antibody. J. Comp. Neurol. 273, 593–602 (1988).

    Article  Google Scholar 

  38. Curcio, C.A. et al. Distribution and morphology of human cone photoreceptors stained with anti-blue opsin. J. Comp. Neurol. 312, 610–624 (1991).

    Article  CAS  Google Scholar 

  39. Mariani, A.P. Bipolar cells in monkey retina selective for the cones likely to be blue-sensitive. Nature 308, 184–186 (1984).

    Article  CAS  Google Scholar 

  40. Kouyama, N. & Marshak, D.W. Bipolar cells specific for blue cones in the macaque retina. J. Neurosci. 12, 1233–1252 (1992).

    Article  CAS  Google Scholar 

  41. Calkins, D.J., Tsukamoto, Y. & Sterling, P. Microcircuitry and mosaic of a blue-yellow ganglion cell in the primate retina. J. Neurosci. 18, 3373–3385 (1998).

    Article  CAS  Google Scholar 

  42. Rieke, F. & Baylor, D.A. Origin and functional impact of dark noise in retinal cones. Neuron 26, 181–186 (2000).

    Article  CAS  Google Scholar 

  43. Chichilnisky, E.J. & Baylor, D.A. Receptive-field microstructure of blue-yellow ganglion cells in primate retina. Nat. Neurosci. 2, 889–893 (1999).

    Article  CAS  Google Scholar 

  44. Jacobs, G.H. Spectral sensitivity and colour vision in the ground-dwelling sciurids: results from golden mantled ground squirrels and comparisons for five species. Anim. Behav. 26, 409–421 (1978).

    Article  CAS  Google Scholar 

  45. Nathans, J. The evolution and physiology of human color vision: insights from molecular genetic studies of visual pigments. Neuron 24, 299–312 (1999).

    Article  CAS  Google Scholar 

  46. Ghosh, K.K., Martin, P.R. & Grünert, U. Morphological analysis of the blue cone pathway in the retina of a New World monkey, the marmoset Callithrix jacchus. J. Comp. Neurol. 379, 211–225 (1997).

    Article  CAS  Google Scholar 

  47. Yang, G. & Masland, R.H. Receptive fields and dendritic structure of directionally selective retinal ganglion cells. J. Neurosci. 14, 5267–5280 (1999).

    Article  Google Scholar 

  48. Hornstein, E.P., Verweij, J. & Schnapf, J.L. Electrical coupling between red and green cones in primate retina. Nat. Neurosci. 7, 645–650 (2004).

    Article  Google Scholar 

  49. Nunn, B.J., Schnapf, J.L. & Baylor, D.A. Spectral sensitivity of single cones in the retina of Macaca fascicularis. Nature 309, 264–266 (1984).

    Article  CAS  Google Scholar 

  50. Laughlin, S.B. Retinal function: coupling cones clarifies vision. Curr. Biol. 12, R833–R834 (2002).

    Article  CAS  Google Scholar 

  51. DeVries, S.H. & Schwartz, E.A. Kainate receptors mediate synaptic transmission between cones and 'off' bipolar cells in a mammalian retina. Nature 397, 157–160 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. McGinnis for the anti-recoverin antibody; and S. Massey and D. Schneeweis for critically reading the manuscript. This work was supported by the US National Institutes of Health (grant EY12141) and Research to Prevent Blindness.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Li.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, W., DeVries, S. Separate blue and green cone networks in the mammalian retina. Nat Neurosci 7, 751–756 (2004). https://doi.org/10.1038/nn1275

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1275

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing