Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Neurogenomics: at the intersection of neurobiology and genome sciences

Abstract

Neurogenomics is the study of how the genome as a whole contributes to the evolution, development, structure and function of the nervous system. It includes investigations of how genome products (transcriptomes and proteomes) vary in time and space. Neurogenomics differs markedly from the application of genome sciences to other systems, particularly in the spatial category, because anatomy and connectivity are paramount to our understanding of function in the nervous system. We focus here on some of the influences of genomics and its associated technologies on neuroscience. We discuss comparative genomics, gene expression atlases of the brain, network genetics and applications to behavioral phenotypes, and consider the culture, organization and funding of genome-scale projects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Tilghman, S.M. Lessons learned, promises kept: a biologist's eye view of the Genome Project. Genome Res. 6, 773–780 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Boguski, M.S., Lowe, T.M. & Tolstoshev, C.M. dbEST—database for “expressed sequence tags”. Nat. Genet. 4, 332–333 (1993).

    Article  CAS  PubMed  Google Scholar 

  3. Schuler, G.D. et al. A gene map of the human genome. Science 274, 540–546 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Lander, E.S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Jessell, T. & Kandel, E. Introduction: one decade of Neuron, six decades of neuroscience. Neuron 20, 367–369 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Tecott, L.H. The genes and brains of mice and men. Am. J. Psychiatry 160, 646–656 (2003).

    Article  PubMed  Google Scholar 

  7. Boguski, M.S. Comparative genomics: the mouse that roared. Nature 420, 515–516 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Enard, W. et al. Molecular evolution of FOXP2, a gene involved in speech and language. Nature 418, 869–872 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Clark, A.G. et al. Inferring nonneutral evolution from human-chimp-mouse orthologous gene trios. Science 302, 1960–1963 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Boguski, M.S. The only thing permanent is change. Genomics 82, 253 (2003).

    Article  CAS  Google Scholar 

  11. Sanger, F. & Coulson, A.R. A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J. Mol. Biol. 94, 441–448 (1975).

    Article  CAS  PubMed  Google Scholar 

  12. Hieter, P. & Boguski, M. Functional genomics: it's all how you read it. Science 278, 601–602 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Liang, M., Cowley, A.W. & Greene, A.S. High throughput gene expression profiling: a molecular approach to integrative physiology. J. Physiol. (Lond.) 554, 22–30 (2004).

    Article  CAS  Google Scholar 

  14. Boguski, M.S. Biosequence exegesis. Science 286, 453–455 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Kell, D.B. & Oliver, S.G. Here is the evidence, now what is the hypothesis? The complementary roles of inductive and hypothesis-driven science in the post-genomic era. Bioessays 26, 99–105 (2004).

    Article  PubMed  Google Scholar 

  16. Adams, M.D. et al. Complementary DNA sequencing: expressed sequence tags and human genome project. Science 252, 1651–1656 (1991).

    Article  CAS  PubMed  Google Scholar 

  17. Zweiger, G. Transducing the Genome: Information, Anarchy, and Revolution in the Biomedical Sciences (McGraw-Hill, New York, 2001).

    Google Scholar 

  18. Adams, M.D. et al. Sequence identification of 2,375 human brain genes. Nature 355, 632–634 (1992).

    Article  CAS  PubMed  Google Scholar 

  19. Boguski, M.S. & Schuler, G.D. ESTablishing a human transcript map. Nat. Genet. 10, 369–371 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Ermolaeva, O. et al. Data management and analysis for gene expression arrays. Nat. Genet. 20, 19–23 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Mathe, C., Sagot, M.F., Schiex, T. & Rouze, P. Current methods of gene prediction, their strengths and weaknesses. Nucleic Acids Res. 30, 4103–4117 (2002).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Picoult-Newberg, L. et al. Mining SNPs from EST databases. Genome Res. 9, 167–174 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Gu, Z., Hillier, L. & Kwok, P.Y. Single nucleotide polymorphism hunting in cyberspace. Hum. Mutat. 12, 221–225 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Boguski, M.S. Hunting for genes in computer data bases. N. Engl. J. Med. 333, 645–647 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Duyk, G.M. Sharper tools and simpler methods. Nat. Genet. 32 (Suppl.), 465–468 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Anonymous. Taking stock. Nat. Genet. 32, 461 (2002).

  27. Kohane, I.S., Kho, A.T. & Butte, A.J. Microarrays for an Integrative Genomics (MIT Press, Cambridge, Massachusetts, USA, 2003).

    Google Scholar 

  28. Boguski, M.S. & McIntosh, M.W. Biomedical informatics for proteomics. Nature 422, 233–237 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Mirnics, K. & Pevsner, J. Progress in the use of microarray technology to study the neurobiology of disease. Nat. Neurosci. 434–439 (2004).

  30. Bassett, D.E., Jr et al. Comparative genomics, genome cross-referencing and XREFdb. Trends Genet. 11, 372–373 (1995).

    Article  CAS  PubMed  Google Scholar 

  31. Tugendreich, S., Bassett, D.E., Jr., McKusick, V.A., Boguski, M.S. & Hieter, P. Genes conserved in yeast and humans. Hum. Mol. Genet. 3 (Spec. No.), 1509–1517 (1994).

    Article  CAS  PubMed  Google Scholar 

  32. Shoemaker, D.D. et al. Experimental annotation of the human genome using microarray technology. Nature 409, 922–927 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Velculescu, V.E. et al. Characterization of the yeast transcriptome. Cell 88, 243–251 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Velculescu, V.E., Zhang, L., Vogelstein, B. & Kinzler, K.W. Serial analysis of gene expression. Science 270, 484–487 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. Bantle, J.A. & Hahn, W.E. Complexity and characterization of polyadenylated RNA in the mouse brain. Cell 8, 139–150 (1976).

    Article  CAS  PubMed  Google Scholar 

  36. Chikaraishi, D.M. Complexity of cytoplasmic polyadenylated and nonpolyadenylated rat brain ribonucleic acids. Biochemistry 18, 3249–3256 (1979).

    Article  CAS  PubMed  Google Scholar 

  37. Sutcliffe, J.G. mRNA in the mammalian central nervous system. Annu. Rev. Neurosci. 11, 157–198 (1988).

    Article  CAS  PubMed  Google Scholar 

  38. Blackshaw, S., Fraioli, R.E., Furukawa, T. & Cepko, C.L. Comprehensive analysis of photoreceptor gene expression and the identification of candidate retinal disease genes. Cell 107, 579–589 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Tietjen, I. et al. Single-cell transcriptional analysis of neuronal progenitors. Neuron 38, 161–175 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Carson, J.P., Thaller, C. & Eichele, G. A transcriptome atlas of the mouse brain at cellular resolution. Curr. Opin. Neurobiol. 12, 562–565 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Gong, S. et al. A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 425, 917–925 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Singh, R.P. et al. High-resolution voxelation mapping of human and rodent brain gene expression. J. Neurosci. Methods 125, 93–101 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Cowan, W.M. The emergence of modern neuroanatomy and developmental neurobiology. Neuron 20, 413–426 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Lockhart, D.J. & Barlow, C. Expressing what's on your mind: DNA arrays and the brain. Nat. Rev. Neurosci. 2, 63–68 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Anonymous. Mapping the mouse brain. Nat. Neurosci. 6, 1113 (2003).

  46. Valenzuela, D.M. et al. High-throughput engineering of the mouse genome coupled with high-resolution expression analysis. Nat. Biotechnol. 21, 652–659 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Schadt, E.E., Monks, S.A. & Friend, S.H. A new paradigm for drug discovery: integrating clinical, genetic, genomic and molecular phenotype data to identify drug targets. Biochem. Soc. Trans. 31, 437–443 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Chesler, E.J. et al. Genetic correlates of gene expression in recombinant inbred strains: a relational model system to explore neurobehavioral phenotypes. Neuroinformatics 1, 343–357 (2003).

    Article  PubMed  Google Scholar 

  49. Tecott, L.H. & Nestler, E.J. Neurobehavioral assessment in the information age. Nat. Neurosci. 462–466 (2004).

  50. Nass, S.J. & Stillman, B. National Cancer Policy Board (U.S.). Committee on Large-scale Science and Cancer Research. & National Research Council (U.S.). Division on Earth and Life Studies. Large-Scale Biomedical Science: Exploring Strategies for Future Research (National Academies Press, Washington, DC, USA, 2003).

    Book  Google Scholar 

  51. Winslow, R.L. & Boguski, M.S. Genome informatics: current status and future prospects. Circ. Res. 92, 953–961 (2003).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Moldin, S.O., Farmer, M.E., Chin, H.R. & Battey, J.F., Jr. Trans-NIH neuroscience initiatives on mouse phenotyping and mutagenesis. Mamm. Genome 12, 575–581 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. International HapMap Consortium. The International HapMap Project. Nature 426, 789–796 (2003).

  54. Holden, A.L. The SNP consortium: summary of a private consortium effort to develop an applied map of the human genome. Biotechniques 26 (Suppl.), 22–24 (2002).

    Article  Google Scholar 

  55. Anonymous. Merck releases first 'gene index' sequences. Nature 373, 549 (1995).

  56. Williamson, A.R. The Merck Gene Index project. Drug Discov. Today 4, 115–122 (1999).

    Article  CAS  PubMed  Google Scholar 

  57. Insel, T.R., Volkow, N.D., Li, T.K., Battey, J.F. & Landis, S.C. Neuroscience networks: data-sharing in an information age. PLoS Biol 1, E17 (2003).

    Article  PubMed Central  PubMed  Google Scholar 

  58. Martone, M.E., Gupta, A. & Ellisman, M.H. e-Neuroscience: challenges and triumphs in integrating distributed data from molecules to brains. Nat. Neurosci. 467–472 (2004).

  59. Van Horn, J.D., Grafton, S.T., Rockmore, D. & Gazzaniga, M.S. Sharing neuroimaging studies of human cognition. Nat. Neurosci. 473–481 (2004).

  60. Koslow, S.H. Sharing primary data: a threat or asset to discovery? Nat. Rev. Neurosci. 3, 311–313 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Zerhouni, E. The NIH Roadmap. Science 302, 63–72 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Neuhauss, S.C. Behavioral genetic approaches to visual system development and function in zebrafish. J. Neurobiol. 54, 148–160 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Marcus, G.F. The Birth of the Mind: How a Tiny Number of Genes Creates the Complexities of Human Thought (Basic Books, New York, 2004).

    Google Scholar 

  64. White, J., Southgate, E., Thomson, J. & Brenner, S. The structure of the nervous system of the nematode Caenorhabditis elegans . Phil. Trans. R. Soc. Lond. B Biol. Sci. 314, 1–340 (1986).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank N. Beauchamp, S. Minoshima and R. Williams for critical readings of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark S Boguski.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boguski, M., Jones, A. Neurogenomics: at the intersection of neurobiology and genome sciences. Nat Neurosci 7, 429–433 (2004). https://doi.org/10.1038/nn1232

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1232

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing