Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dopamine neurons release transmitter via a flickering fusion pore

Abstract

A key question in understanding mechanisms of neurotransmitter release is whether the fusion pore of a synaptic vesicle regulates the amount of transmitter released during exocytosis. We measured dopamine release from small synaptic vesicles of rat cultured ventral midbrain neurons using carbon fiber amperometry. Our data indicate that small synaptic vesicle fusion pores flicker either once or multiple times in rapid succession, with each flicker releasing 25–30% of vesicular dopamine. The incidence of events with multiple flickers was reciprocally regulated by phorbol esters and staurosporine. Thus, dopamine neurons regulate the amount of neurotransmitter released by small synaptic vesicles by controlling the number of fusion pore flickers per exocytotic event. This mode of exocytosis is a potential mechanism whereby neurons can rapidly reuse vesicles without undergoing the comparatively slow process of recycling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dopamine release from axonal varicosities of rat ventral midbrain dopamine neurons.
Figure 2: Amplitudes of flickers within complex events.
Figure 3: Pharmacological regulation of the incidence of complex events.
Figure 4: Mechanisms that may explain complex events (left column) and predicted averaged amperometric event shape (right column).
Figure 5: Simulated dopamine spillover in the striatum.

Similar content being viewed by others

References

  1. Valtorta, F., Meldolesi, J. & Fesce, R. Synaptic vesicles: is kissing a matter of competence? Trends Cell Biol. 11, 324–328 (2001).

    Article  CAS  Google Scholar 

  2. Heuser, J.E. & Reese, T.S. Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. J. Cell Biol. 57, 315–344 (1973).

    Article  CAS  Google Scholar 

  3. Ceccarelli, B., Hurlbut, W.P. & Mauro, A. Turnover of transmitter and synaptic vesicles at the frog neuromuscular junction. J. Cell Biol. 57, 499–524 (1973).

    Article  CAS  Google Scholar 

  4. Sun, J.Y., Wu, X.S. & Wu, L.G. Single and multiple vesicle fusion induce different rates of endocytosis at a central synapse. Nature 417, 555–559 (2002).

    Article  CAS  Google Scholar 

  5. Klyachko, V.A. & Jackson, M.B. Capacitance steps and fusion pores of small and large-dense-core vesicles in nerve terminals. Nature 418, 89–92 (2002).

    Article  CAS  Google Scholar 

  6. Henkel, A.W. & Betz, W.J. Staurosporine blocks evoked release of FM1-43 but not acetylcholine from frog motor nerve terminals. J. Neurosci. 15, 8246–8258 (1995).

    Article  CAS  Google Scholar 

  7. Gandhi, S.P. & Stevens, C.F. Three modes of synaptic vesicular recycling revealed by single-vesicle imaging. Nature 423, 607–613 (2003).

    Article  CAS  Google Scholar 

  8. Aravanis, A.M., Pyle, J.L. & Tsien, R.W. Single synaptic vesicles fusing transiently and successively without loss of identity. Nature 423, 643–647 (2003).

    Article  CAS  Google Scholar 

  9. Stiles, J.R., Van Helden, D., Bartol, T.M. Jr., Salpeter, E.E. & Salpeter, M.M. Miniature endplate current rise times less than 100 microseconds from improved dual recordings can be modeled with passive acetylcholine diffusion from a synaptic vesicle. Proc. Natl. Acad. Sci. USA 93, 5747–5752 (1996).

    Article  CAS  Google Scholar 

  10. Pothos, E.N., Davila, V. & Sulzer, D. Presynaptic recording of quanta from midbrain dopamine neurons and modulation of the quantal size. J. Neurosci. 18, 4106–4118 (1998).

    Article  CAS  Google Scholar 

  11. Pothos, E.N. et al. Synaptic vesicle transporter expression regulates vesicle phenotype and quantal size. J. Neurosci. 20, 7297–7306 (2000).

    Article  CAS  Google Scholar 

  12. Bittner, M.A. Alpha-latrotoxin and its receptors CIRL (latrophilin) and neurexin 1 alpha mediate effects on secretion through multiple mechanisms. Biochimie 82, 447–452 (2000).

    Article  CAS  Google Scholar 

  13. Bruns, D. & Jahn, R. Real-time measurement of transmitter release from single synaptic vesicles. Nature 377, 62–65 (1995).

    Article  CAS  Google Scholar 

  14. Hochstetler, S.E., Puopolo, M., Gustincich, S., Raviola, E. & Wightman, R.M. Real-time amperometric measurements of zeptomole quantities of dopamine released from neurons. Anal. Chem. 72, 489–496 (2000).

    Article  CAS  Google Scholar 

  15. Hartmann, J., Scepek, S. & Lindau, M. Regulation of granule size in human and horse eosinophils by number of fusion events among unit granules. J. Physiol. (Lond.) 483, 201–209 (1995).

    Article  CAS  Google Scholar 

  16. Lollike, K., Borregaard, N. & Lindau, M. The exocytotic fusion pore of small granules has a conductance similar to an ion channel. J. Cell Biol. 129, 99–104 (1995).

    Article  CAS  Google Scholar 

  17. Albillos, A. et al. The exocytic event in chromaffin cells revealed by patch amperometry. Nature 389, 509–512 (1997).

    Article  CAS  Google Scholar 

  18. Betz, A. et al. Munc13-1 is a presynaptic phorbol ester receptor that enhances neurotransmitter release. Neuron 21, 123–136 (1998).

    Article  CAS  Google Scholar 

  19. Rhee, J.S. et al. Beta phorbol ester- and diacylglycerol-induced augmentation of transmitter release is mediated by Munc13s and not by PKCs. Cell 108, 121–133 (2002).

    Article  CAS  Google Scholar 

  20. Zhu, H., Hille, B. & Xu, T. Sensitization of regulated exocytosis by protein kinase C. Proc. Natl. Acad. Sci. USA 99, 17055–17059 (2002).

    Article  CAS  Google Scholar 

  21. Yang, Y., Udayasankar, S., Dunning, J., Chen, P. & Gillis, K.D. A highly Ca2+-sensitive pool of vesicles is regulated by protein kinase C in adrenal chromaffin cells. Proc. Natl. Acad. Sci. USA 99, 17060–17065 (2002).

    Article  CAS  Google Scholar 

  22. Wang, P., Wang, C.T., Bai, J., Jackson, M.B. & Chapman, E.R. Mutations in the effector binding loops in the C2A and C2B domains of synaptotagmin I disrupt exocytosis in a nonadditive manner. J. Biol. Chem. 278, 47030–47037 (2003).

    Article  CAS  Google Scholar 

  23. Graham, M.E., Fisher, R.J. & Burgoyne, R.D. Measurement of exocytosis by amperometry in adrenal chromaffin cells: effects of clostridial neurotoxins and activation of protein kinase C on fusion pore kinetics. Biochimie 82, 469–479 (2000).

    Article  CAS  Google Scholar 

  24. Scepek, S., Coorssen, J.R. & Lindau, M. Fusion pore expansion in horse eosinophils is modulated by Ca2+ and protein kinase C via distinct mechanisms. EMBO J. 17, 4340–4345 (1998).

    Article  CAS  Google Scholar 

  25. Gillis, K.D., Mossner, R. & Neher, E. Protein kinase C enhances exocytosis from chromaffin cells by increasing the size of the readily releasable pool of secretory granules. Neuron 16, 1209–1220 (1996).

    Article  CAS  Google Scholar 

  26. Wightman, R.M. et al. Temporally resolved catecholamine spikes correspond to single vesicle release from individual chromaffin cells. Proc. Natl. Acad. Sci. USA 88, 10754–10758 (1991).

    Article  CAS  Google Scholar 

  27. Chen, G., Gavin, P.F., Luo, G. & Ewing, A.G. Observation and quantitation of exocytosis from the cell body of a fully developed neuron in Planorbis corneus. J. Neurosci. 15, 7747–7755 (1995).

    Article  CAS  Google Scholar 

  28. Jaffe, E.H., Marty, A., Schulte, A. & Chow, R.H. Extrasynaptic vesicular transmitter release from the somata of substantia nigra neurons in rat midbrain slices. J. Neurosci. 18, 3548–3553 (1998).

    Article  CAS  Google Scholar 

  29. Girod, R., Correges, P., Jacquet, J. & Dunant, Y. Space and time characteristics of transmitter release at the nerve-electroplaque junction of Torpedo. J. Physiol. 471, 129–157 (1993).

    Article  CAS  Google Scholar 

  30. Hafez, I., Stolpe, A. & Lindau, M. Compound exocytosis and cumulative fusion in eosinophils. J. Biol. Chem. 278, 44921–44928 (2003).

    Article  CAS  Google Scholar 

  31. Alvarez de Toledo, G., Fernandez-Chacon, R. & Fernandez, J.M. Release of secretory products during transient vesicle fusion. Nature 363, 554–558 (1993).

    Article  CAS  Google Scholar 

  32. Zhou, Z., Misler, S. & Chow, R.H. Rapid fluctuations in transmitter release from single vesicles in bovine adrenal chromaffin cells. Biophys. J. 70, 1543–1552 (1996).

    Article  CAS  Google Scholar 

  33. Cremona, O. & De Camilli, P. Synaptic vesicle endocytosis. Curr. Opin. Neurobiol. 7, 323 (1997).

    Article  CAS  Google Scholar 

  34. Pickel, V.M., Nirenberg, M.J. & Milner, T.A. Ultrastructural view of central catecholaminergic transmission: immunocytochemical localization of synthesizing enzymes, transporters and receptors. J. Neurocytol. 25, 843–856 (1996).

    Article  CAS  Google Scholar 

  35. Garris, P.A., Ciolkowski, E.L., Pastore, P. & Wightman, R.M. Efflux of dopamine from the synaptic cleft in the nucleus accumbens of the rat brain. J. Neurosci. 14, 6084–6093 (1994).

    Article  CAS  Google Scholar 

  36. Schmitz, Y., Benoit-Marand, M., Gonon, F. & Sulzer, D. Presynaptic plasticity of dopaminergic neurotransmission. J. Neurochem. 87, 273–289 (2003).

    Article  CAS  Google Scholar 

  37. Gonon, F. et al. Geometry and kinetics of dopaminergic transmission in the rat striatum and in mice lacking the dopamine transporter. Prog. Brain Res. 125, 291–302 (2000).

    Article  CAS  Google Scholar 

  38. Sulzer, D. & Pothos, E.N. Presynaptic mechanisms that regulate quantal size. Rev. Neurosci. 11, 159–212 (2000).

    Article  CAS  Google Scholar 

  39. Cragg, S.J., Nicholson, C., Kume-Kick, J., Tao, L. & Rice, M.E. Dopamine-mediated volume transmission in midbrain is regulated by distinct extracellular geometry and uptake. J. Neurophysiol. 85, 1761–1771 (2001).

    Article  CAS  Google Scholar 

  40. Pothos, E.N., Przedborski, S., Davila, V., Schmitz, Y. & Sulzer, D. D2-Like dopamine autoreceptor activation reduces quantal size in PC12 cells. J. Neurosci. 18, 5575–5585 (1998).

    Article  CAS  Google Scholar 

  41. Colquhoun, D. & Sigworth, F.J. Fitting and statistical analysis of single-channel records. in Single-Channel Recording (eds. Sakmann, B. & Neher, E.) 483–587 (Plenum, New York, 1995).

    Chapter  Google Scholar 

  42. Colliver, T., Hess, E., Pothos, E.N., Sulzer, D. & Ewing, A.G. Quantitative and statistical analysis of the shape of amperometric spikes recorded from two populations of cells. J. Neurochem. 74, 1086–1097 (1999).

    Article  Google Scholar 

  43. Berg, H.C. Random Walks in Biology 152 (Princeton Univ. Press, Princeton, 1983).

    Google Scholar 

  44. Nicholson, C. Diffusion of ions and macromolecules in brain tissue. in Monitoring Molecules in Neuroscience Vol. 8 (eds. Rollema, H., Abercrombie, E., Sulzer, D. & Zackheim, J.) 71–73 (Rutgers Press, Newark, New Jersey, 1999).

    Google Scholar 

  45. Jeremic, A., Kelly, M., Choo, S.J., Stromer, M.H. & Jena, B.P. Reconstituted fusion pore. Biophys. J. 85, 2035–2043 (2003).

    Article  CAS  Google Scholar 

  46. Rice, M.E. et al. Direct monitoring of dopamine and 5-HT release in substantia nigra and ventral tegmental area in vitro. Exp. Brain Res. 100, 395–406 (1994).

    Article  CAS  Google Scholar 

  47. Schmitz, Y., Lee, C.J., Schmauss, C., Gonon, F. & Sulzer, D. Amphetamine distorts synaptic dopamine overflow: effects on D2 autoreceptors, transporters, and synaptic vesicle stores. J. Neurosci. 21, 5916–5924 (2001).

    Article  CAS  Google Scholar 

  48. Levant, B. The D3 dopamine receptor: neurobiology and potential clinical relevance. Pharmacol. Rev. 49, 231–252 (1997).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Q. Al-Awqati, K. Larsen, M. Nirenberg and Y. Schmitz for critique of the manuscript, and A. Petrenko for α-latrotoxin. Supported by the National Alliance for Research on Schizophrenia and Depression, the Lowenstein Foundation, the Parkinson's Disease Foundation, the National Institute on Drug Abuse and the National Institute of Neurological Disorders and Stroke.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Sulzer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

To estimate the frequency of stochastically overlapping events, the fraction of interspike intervals within 1 s bins is indicated on the y axis. The best-fit exponential decay and corresponding time constant determined by least squares is shown for each experimental group. (JPG 32 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Staal, R., Mosharov, E. & Sulzer, D. Dopamine neurons release transmitter via a flickering fusion pore. Nat Neurosci 7, 341–346 (2004). https://doi.org/10.1038/nn1205

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1205

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing