Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neural activity and the dynamics of central nervous system development

Abstract

Recent imaging studies show that the formation of neural connections in the central nervous system is a highly dynamic process. The iterative formation and elimination of synapses and neuronal branches result in the formation of a much larger number of trial connections than is maintained in the mature brain. Neural activity modulates development through biasing this process of formation and elimination, promoting the formation and stabilization of appropriate synaptic connections on the basis of functional activity patterns.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Two models of neural development.
Figure 2: Time-lapse imaging experiments suggest that neural development is a highly dynamic process of concurrent formation and elimination.
Figure 3: Schematic diagram of the growth of a dendrite branch illustrating the synaptotropic hypothesis.

Similar content being viewed by others

References

  1. Lichtman, J.W. & Colman, H. Synapse elimination and indelible memory. Neuron 25, 269–278 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Goda, Y. & Davis, G.W. Mechanisms of synapse assembly and disassembly. Neuron 40, 243–264 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Kantor, D.B. & Kolodkin, A.L. Curbing the excesses of youth: molecular insights into axonal pruning. Neuron 38, 849–852 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Crepel, F. Maturation of climbing fiber responses in the rat. Brain Res. 35, 272–276 (1971).

    Article  CAS  PubMed  Google Scholar 

  5. Hashimoto, K. & Kano, M. Functional differentiation of multiple climbing fiber inputs during synapse elimination in the developing cerebellum. Neuron 38, 785–796 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Hubel, D.H. & Wiesel, T.N. J. Neurophysiol. 26, 994 (1963).

    Article  CAS  PubMed  Google Scholar 

  7. Chen, C. & Regehr, W.G. Developmental remodeling of the retinogeniculate synapse. Neuron 28, 955–966 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Tavazoie, S.F. & Reid, R.C. Diverse receptive fields in the lateral geniculate nucleus during thalamocortical development. Nat. Neurosci. 3, 608–616 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Gaze, R.M., Keating, M.J. & Chung, S.H. The evolution of the retinotectal map during development in Xenopus. Proc. R. Soc. Lond. B Biol. Sci. 185, 301–330 (1974).

    Article  CAS  PubMed  Google Scholar 

  10. Jackson, H. & Parks, T.N. Functional synapse elimination in the developing avian cochlear nucleus with simultaneous reduction in cochlear nerve axon branching. J. Neurosci. 2, 1736–1743 (1982).

    Article  CAS  PubMed  Google Scholar 

  11. Cajal, R.y. La Textura del Sistema Nerviosa del Hombre y los Vertebrados (Moya,–Madrid, 1899).

    Google Scholar 

  12. Huttenlocher, P.R. Synaptic density in human frontal cortex - developmental changes and effects of aging. Brain Res. 163, 195–205 (1979).

    Article  CAS  PubMed  Google Scholar 

  13. Huttenlocher, P.R., de Courten, C., Garey, L.J. & Van der Loos, H. Synaptogenesis in human visual cortex—evidence for synapse elimination during normal development. Neurosci. Lett. 33, 247–252 (1982).

    Article  CAS  PubMed  Google Scholar 

  14. Rakic, P., Bourgeois, J.P., Eckenhoff, M.F., Zecevic, N. & Goldman-Rakic, P.S. Concurrent overproduction of synapses in diverse regions of the primate cerebral cortex. Science 232, 232–235 (1986).

    Article  CAS  PubMed  Google Scholar 

  15. Hamos, J.E., Van Horn, S.C., Raczkowski, D. & Sherman, S.M. Synaptic circuits involving an individual retinogeniculate axon in the cat. J. Comp. Neurol. 259, 165–192 (1987).

    Article  CAS  PubMed  Google Scholar 

  16. Antonini, A. & Stryker, M.P. Rapid remodeling of axonal arbors in the visual cortex. Science 260, 1819–1821 (1993).

    Article  CAS  PubMed  Google Scholar 

  17. Sretavan, D.W. & Shatz, C.J. Prenatal development of retinal ganglion cell axons: segregation into eye-specific layers within the cat's lateral geniculate nucleus. J. Neurosci. 6, 234–251 (1986).

    Article  CAS  PubMed  Google Scholar 

  18. Campbell, G. & Shatz, C.J. Synapses formed by identified retinogeniculate axons during the segregation of eye input. J. Neurosci. 12, 1847–1858 (1992).

    Article  CAS  PubMed  Google Scholar 

  19. Crowley, J.C. & Katz, L.C. Early development of ocular dominance columns. Science 290, 1321–1324 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Rajan, I. & Cline, H.T. Glutamate receptor activity is required for normal development of tectal cell dendrites in vivo. J. Neurosci. 18, 7836–7846 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Rajan, I., Witte, S. & Cline, H.T. NMDA receptor activity stabilizes presynaptic retinotectal axons and postsynaptic optic tectal cell dendrites in vivo. J. Neurobiol. 38, 357–368 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Kaethner, R.J. & Stuermer, C.A. Dynamics of terminal arbor formation and target approach of retinotectal axons in living zebrafish embryos: a time-lapse study of single axons. J. Neurosci. 12, 3257–3271 (1992).

    Article  CAS  PubMed  Google Scholar 

  23. Kaethner, R.J. & Stuermer, C.A. Dynamics of process formation during differentiation of tectal neurons in embryonic zebrafish. J. Neurobiol. 32, 627–639 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Ziv, N.E. & Smith, S.J. Evidence for a role of dendritic filopodia in synaptogenesis and spine formation. Neuron 17, 91–102 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Dailey, M.E. & Smith, S.J. The dynamics of dendritic structure in developing hippocampal slices. J. Neurosci. 16, 2983–2994 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Jontes, J.D., Buchanan, J. & Smith, S.J. Growth cone and dendrite dynamics in zebrafish embryos: early events in synaptogenesis imaged in vivo. Nat. Neurosci. 3, 231–237 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Tashiro, A., Dunaevsky, A., Blazeski, R., Mason, C.A. & Yuste, R. Bidirectional regulation of hippocampal mossy fiber filopodial motility by kainate receptors: a two-step model of synaptogenesis. Neuron 38, 773–784 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Wong, W.T. & Wong, R.O. Changing specificity of neurotransmitter regulation of rapid dendritic remodeling during synaptogenesis. Nat. Neurosci. 4, 351–352 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Chang, S. & De Camilli, P. Glutamate regulates actin-based motility in axonal filopodia. Nat. Neurosci. 4, 787–793 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Jontes, J.D. & Smith, S.J. Filopodia, spines, and the generation of synaptic diversity. Neuron 27, 11–14 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Bonhoeffer, T. & Yuste, R. Spine motility. Phenomenology, mechanisms, and function. Neuron 35, 1019–1027 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Trachtenberg, J.T. et al. Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature 420, 788–794 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Fiala, J.C., Feinberg, M., Popov, V. & Harris, K.M. Synaptogenesis via dendritic filopodia in developing hippocampal area CA1. J. Neurosci. 18, 8900–8911 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Marrs, G.S., Green, S.H. & Dailey, M.E. Rapid formation and remodeling of postsynaptic densities in developing dendrites. Nat. Neurosci. 4, 1006–1013 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Okabe, S., Kim, H.D., Miwa, A., Kuriu, T. & Okado, H. Continual remodeling of postsynaptic density and its regulation by synaptic activity. Nat. Neurosci. 2, 804–811 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Alsina, B., Vu, T. & Cohen-Cory, S. Visualizing synapse formation in arborizing optic axons in vivo: dynamics and modulation by BDNF. Nat. Neurosci. 4, 1093–1101 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Ahmari, S.E., Buchanan, J. & Smith, S.J. Assembly of presynaptic active zones from cytoplasmic transport packets. Nat. Neurosci. 3, 445–451 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Ahmari, S.E. & Smith, S.J. Knowing a nascent synapse when you see it. Neuron 34, 333–336 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Ziv, N.E. & Garner, C.C. Principles of glutamatergic synapse formation: seeing the forest for the trees. Curr. Opin. Neurobiol. 11, 536–543 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Zhang, L.I. & Poo, M.M. Electrical activity and development of neural circuits. Nat. Neurosci. 4 (Suppl.), 1207–1214 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Weisel, T.N. Nature 299, 583 (1982).

    Article  Google Scholar 

  42. Katz, L.C. & Shatz, C.J. Synaptic activity and the construction of cortical circuits. Science 274, 1133–1138 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. Wong, R.O. & Ghosh, A. Activity-dependent regulation of dendritic growth and patterning. Nat. Rev. Neurosci. 3, 803–812 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Cline, H.T. Dendritic arbor development and synaptogenesis. Curr. Opin. Neurobiol. 11, 118–126 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Augustin, I., Rosenmund, C., Sudhof, T.C. & Brose, N. Munc13-1 is essential for fusion competence of glutamatergic synaptic vesicles. Nature 400, 457–461 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Verhage, M. et al. Synaptic assembly of the brain in the absence of neurotransmitter secretion. Science 287, 864–869 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. De Paola, V., Arber, S. & Caroni, P. AMPA receptors regulate dynamic equilibrium of presynaptic terminals in mature hippocampal networks. Nat. Neurosci. 6, 491–500 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Star, E.N., Kwiatkowski, D.J. & Murthy, V.N. Rapid turnover of actin in dendritic spines and its regulation by activity. Nat. Neurosci. 5, 239–246 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Fukazawa, Y. et al. Hippocampal LTP is accompanied by enhanced F-actin content within the dendritic spine that is essential for late LTP maintenance in vivo. Neuron 38, 447–460 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Fischer, M., Kaech, S., Wagner, U., Brinkhaus, H. & Matus, A. Glutamate receptors regulate actin-based plasticity in dendritic spines. Nat. Neurosci. 3, 887–894 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Malinow, R. & Malenka, R.C. AMPA receptor trafficking and synaptic plasticity. Annu. Rev. Neurosci. 25, 103–126 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. McKinney, R.A., Capogna, M., Durr, R., Gahwiler, B.H. & Thompson, S.M. Miniature synaptic events maintain dendritic spines via AMPA receptor activation. Nat. Neurosci. 2, 44–49 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Passafaro, M., Nakagawa, T., Sala, C. & Sheng, M. Induction of dendritic spines by an extracellular domain of AMPA receptor subunit GluR2. Nature 424, 677–681 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Steward, O. & Schuman, E.M. Protein synthesis at synaptic sites on dendrites. Annu. Rev. Neurosci. 24, 299–325 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Sala, C. et al. Regulation of dendritic spine morphology and synaptic function by Shank and Homer. Neuron 31, 115–130 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Poo, M.M. Neurotrophins as synaptic modulators. Nat. Rev. Neurosci. 2, 24–32 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. McAllister, A.K., Katz, L.C. & Lo, D.C. Neurotrophins and synaptic plasticity. Annu. Rev. Neurosci. 22, 295–318 (1999).

    Article  CAS  PubMed  Google Scholar 

  58. Collin, C. et al. Neurotrophins act at presynaptic terminals to activate synapses among cultured hippocampal neurons. Eur. J. Neurosci. 13, 1273–1282 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Tyler, W.J. & Pozzo-Miller, L.D. BDNF enhances quantal neurotransmitter release and increases the number of docked vesicles at the active zones of hippocampal excitatory synapses. J. Neurosci. 21, 4249–4258 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Luthi, A., Schwyzer, L., Mateos, J.M., Gahwiler, B.H. & McKinney, R.A. NMDA receptor activation limits the number of synaptic connections during hippocampal development. Nat. Neurosci. 4, 1102–1107 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Balice-Gordon, R.J. & Lichtman, J.W. Long-term synapse loss induced by focal blockade of postsynaptic receptors. Nature 372, 519–524 (1994).

    Article  CAS  PubMed  Google Scholar 

  62. Zhu, J.J. & Malinow, R. Acute versus chronic NMDA receptor blockade and synaptic AMPA receptor delivery. Nat. Neurosci. 5, 513–514 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Zhao, H. & Reed, R.R. X inactivation of the OCNC1 channel gene reveals a role for activity-dependent competition in the olfactory system. Cell 104, 651–660 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Burrone, J., O'Byrne, M. & Murthy, V.N. Multiple forms of synaptic plasticity triggered by selective suppression of activity in individual neurons. Nature 420, 414–418 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Johns, D.C., Marx, R., Mains, R.E., O'Rourke, B. & Marban, E. Inducible genetic suppression of neuronal excitability. J. Neurosci. 19, 1691–1697 (1999).

    Article  CAS  PubMed  Google Scholar 

  66. Colicos, M.A., Collins, B.E., Sailor, M.J. & Goda, Y. Remodeling of synaptic actin induced by photoconductive stimulation. Cell 107, 605–616 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Engert, F., Tao, H.W., Zhang, L.I. & Poo, M.M. Moving visual stimuli rapidly induce direction sensitivity of developing tectal neurons. Nature 419, 470–475 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Vaughn, J.E. Fine structure of synaptogenesis in the vertebrate central nervous system. Synapse 3, 255–285 (1989).

    Article  CAS  PubMed  Google Scholar 

  69. Maletic-Savatic, M., Malinow, R. & Svoboda, K. Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity. Science 283, 1923–1927 (1999).

    Article  CAS  PubMed  Google Scholar 

  70. Lendvai, B., Stern, E.A., Chen, B. & Svoboda, K. Experience-dependent plasticity of dendritic spines in the developing rat barrel cortex in vivo. Nature 404, 876–881 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Schmidt, J.T., Fleming, M.R. & Leu, B. J. Neurobiol. 58, 328 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Lohmann, C., Myhr, K.L. & Wong, R.O. Transmitter-evoked local calcium release stabilizes developing dendrites. Nature 418, 177–181 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Hall, A. Rho GTPases and the actin cytoskeleton. Science 279, 509–514 (1998).

    Article  CAS  PubMed  Google Scholar 

  74. Li, Z., Aizenman, C.D. & Cline, H.T. Regulation of rho GTPases by crosstalk and neuronal activity in vivo. Neuron 33, 741–750 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Vaughn, J.E., Barber, R.P. & Sims, T.J. Dendritic development and preferential growth into synaptogenic fields: a quantitative study of Golgi-impregnated spinal motor neurons. Synapse 2, 69–78 (1988).

    Article  CAS  PubMed  Google Scholar 

  76. Lisman, J., Schulman, H. & Cline, H. The molecular basis of CaMKII function in synaptic and behavioural memory. Nat. Rev. Neurosci. 3, 175–190 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Wu, G.Y. & Cline, H.T. Stabilization of dendritic arbor structure in vivo by CaMKII. Science 279, 222–226 (1998).

    Article  CAS  PubMed  Google Scholar 

  78. Cantallops, I., Haas, K. & Cline, H.T. Postsynaptic CPG15 promotes synaptic maturation and presynaptic axon arbor elaboration in vivo. Nat. Neurosci. 3, 1004–1011 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Nedivi, E., Wu, G.Y. & Cline, H.T. Promotion of dendritic growth by CPG15, an activity-induced signaling molecule. Science 281, 1863–1866 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ouyang, Y., Rosenstein, A., Kreiman, G., Schuman, E.M. & Kennedy, M.B. Tetanic stimulation leads to increased accumulation of Ca2+/calmodulin-dependent protein kinase II via dendritic protein synthesis in hippocampal neurons. J. Neurosci. 19, 7823–7833 (1999).

    Article  CAS  PubMed  Google Scholar 

  81. Ruthazer, E.S., Akerman, C.J. & Cline, H.T. Control of axon branch dynamics by correlated activity in vivo. Science 301, 66–70 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Chapman, B. Necessity for afferent activity to maintain eye-specific segregation in ferret lateral geniculate nucleus. Science 287, 2479–2482 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Garthwaite, J., Charles, S.L. & Chess-Williams, R. Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain. Nature 336, 385–388 (1988).

    Article  CAS  PubMed  Google Scholar 

  84. Brenman, J.E. & Bredt, D.S. Synaptic signaling by nitric oxide. Curr. Opin. Neurobiol. 7, 374–378 (1997).

    Article  CAS  PubMed  Google Scholar 

  85. Renteria, R.C. & Constantine-Paton, M. Exogenous nitric oxide causes collapse of retinal ganglion cell axonal growth cones in vitro. J. Neurobiol. 29, 415–428 (1996).

    Article  CAS  PubMed  Google Scholar 

  86. Gallo, G., Lefcort, F.B. & Letourneau, P.C. The trkA receptor mediates growth cone turning toward a localized source of nerve growth factor. J. Neurosci. 17, 5445–5454 (1997).

    Article  CAS  PubMed  Google Scholar 

  87. Cohen-Cory, S. & Fraser, S.E. Effects of brain-derived neurotrophic factor on optic axon branching and remodelling in vivo. Nature 378, 192–196 (1995).

    Article  CAS  PubMed  Google Scholar 

  88. Horch, H.W. & Katz, L.C. BDNF release from single cells elicits local dendritic growth in nearby neurons. Nat. Neurosci. 5, 1177–1184 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Horch, H.W., Kruttgen, A., Portbury, S.D. & Katz, L.C. Destabilization of cortical dendrites and spines by BDNF. Neuron 23, 353–364 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J.D. Jontes, L.C. Katz, E.I. Knudsen, L. Luo and J.T. Schmidt for discussions, members of the Smith lab for critical reading of the manuscript, and the US National Institutes of Health and the Vincent Coates Foundation for financial support. Y.H. was supported by a Stanford Graduate Fellowship and a Coates Foundation Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen J Smith.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hua, J., Smith, S. Neural activity and the dynamics of central nervous system development. Nat Neurosci 7, 327–332 (2004). https://doi.org/10.1038/nn1218

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1218

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing