Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

PKA phosphorylation of AMPA receptor subunits controls synaptic trafficking underlying plasticity

Abstract

The regulated incorporation of AMPA receptors into synapses is important for synaptic plasticity. Here we examine the role of protein kinase A (PKA) in this process. We found that PKA phosphorylation of the AMPA receptor subunits GluR4 and GluR1 directly controlled the synaptic incorporation of AMPA receptors in organotypic slices from rat hippocampus. Activity-driven PKA phosphorylation of GluR4 was necessary and sufficient to relieve a retention interaction and drive receptors into synapses. In contrast, PKA phosphorylation of GluR1 and the activity of calcium/calmodulin-dependent kinase II (CaMKII) were both necessary for receptor incorporation. Thus, PKAphosphorylation of AMPA receptor subunits contributes to diverse mechanisms underlying synaptic plasticity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PKA activity is necessary and sufficient for GluR4–GFP incorporation into synapses.
Figure 2: GluR4–GFP is driven into synapses rapidly upon acute PKA activation.
Figure 3: Regulated phosphorylation of GluR4 and GluR1 by PKA and CaMKII.
Figure 4: GluR4 Ser842 controls a retention interaction.
Figure 5: PKA activity is necessary but not sufficient for the CaMKII-driven incorporation of GluR1 into synapses.
Figure 6: Phosphorylation of PKA target S845, but not CaMKII target S831, is required for stable LTP.

Similar content being viewed by others

References

  1. Bliss, T.V. & Collingridge, G.L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39 (1993).

    Article  CAS  Google Scholar 

  2. Martin, S.J., Grimwood, P.D. & Morris, R.G. Synaptic plasticity and memory: an evaluation of the hypothesis. Annu. Rev. Neurosci. 23, 649–711 (2000).

    Article  CAS  Google Scholar 

  3. Katz, L.C. & Shatz, C.J. Synaptic activity and the construction of cortical circuits. Science 274, 1133–1138 (1996).

    Article  CAS  Google Scholar 

  4. Bear, M.F. & Rittenhouse, C.D. Molecular basis for induction of ocular dominance plasticity. J. Neurobiol. 41, 83–91 (1999).

    Article  CAS  Google Scholar 

  5. Lisman, J., Schulman, H. & Cline, H. The molecular basis of CaMKII function in synaptic and behavioural memory. Nat. Rev. Neurosci. 3, 175–190 (2002).

    Article  CAS  Google Scholar 

  6. Sweatt, J.D. The neuronal MAP kinase cascade: a biochemical signal integration system subserving synaptic plasticity and memory. J. Neurochem. 76, 1–10 (2001).

    Article  CAS  Google Scholar 

  7. Brandon, E.P., Idzerda, R.L. & McKnight, G.S. PKA isoforms, neural pathways and behaviour: making the connection. Curr. Opin. Neurobiol. 7, 397–403 (1997).

    Article  CAS  Google Scholar 

  8. Jordan, J.D. & Iyengar, R. Modes of interactions between signaling pathways. Biochem. Pharmacol. 55, 1347–1352 (1998).

    Article  CAS  Google Scholar 

  9. Zhu, J.J. & Malinow, R. Acute versus chronic NMDA receptor blockade and synaptic AMPA receptor delivery. Nat. Neurosci. 5, 513–514 (2002).

    Article  CAS  Google Scholar 

  10. Sanes, J.R. & Lichtman, J.W. Can molecules explain long-term potentiation? Nat. Neurosci. 2, 597–604 (1999).

    Article  CAS  Google Scholar 

  11. Blitzer, R.D. et al. Gating of CaMKII by cAMP-regulated protein phosphatase activity during LTP. Science 280, 1940–1942 (1998).

    Article  CAS  Google Scholar 

  12. Brown, G.P. et al. Long-term potentiation induced by theta frequency stimulation is regulated by a protein phosphatase-1-operated gate. J. Neurosci. 20, 7880–7887 (2000).

    Article  CAS  Google Scholar 

  13. Abel, T. et al. Genetic demonstration of a role for PKA in the late phase of LTP and in hippocampus-based long-term memory. Cell 88, 615–626 (1997).

    Article  CAS  Google Scholar 

  14. Impey, S. et al. Induction of CRE-mediated gene expression by stimuli that generate long-lasting LTP in area CA1 of the hippocampus. Neuron 16, 973–982 (1996).

    Article  CAS  Google Scholar 

  15. Bolshakov, V.Y., Golan, H., Kandel, E.R. & Siegelbaum, S.A. Recruitment of new sites of synaptic transmission during the cAMP-dependent late phase of LTP at CA3-CA1 synapses in the hippocampus. Neuron 19, 635–651 (1997).

    Article  CAS  Google Scholar 

  16. Barco, A., Alarcon, J.M. & Kandel, E.R. Expression of constitutively active CREB protein facilitates the late phase of long-term potentiation by enhancing synaptic capture. Cell 108, 689–703 (2002).

    Article  CAS  Google Scholar 

  17. Salin, P.A., Malenka, R.C. & Nicoll, R.A. Cyclic AMP mediates a presynaptic form of LTP at cerebellar parallel fiber synapses. Neuron 16, 797–803 (1996).

    Article  CAS  Google Scholar 

  18. Weisskopf, M.G., Castillo, P.E., Zalutsky, R.A. & Nicoll, R.A. Mediation of hippocampal mossy fiber long-term potentiation by cyclic AMP. Science 265, 1878–1882 (1994).

    Article  CAS  Google Scholar 

  19. Sheng, M. & Lee, S.H. AMPA receptor trafficking and the control of synaptic transmission. Cell 105, 825–828 (2001).

    Article  CAS  Google Scholar 

  20. Malinow, R. & Malenka, R.C. AMPA receptor trafficking and synaptic plasticity. Annu. Rev. Neurosci. 25, 103–126 (2002).

    Article  CAS  Google Scholar 

  21. Barry, M.F. & Ziff, E.B. Receptor trafficking and the plasticity of excitatory synapses. Curr. Opin. Neurobiol. 12, 279–286 (2002).

    Article  CAS  Google Scholar 

  22. Song, I. & Huganir, R.L. Regulation of AMPA receptors during synaptic plasticity. Trends Neurosci. 25, 578–588 (2002).

    Article  CAS  Google Scholar 

  23. Shi, S., Hayashi, Y., Esteban, J.A. & Malinow, R. Subunit-specific rules governing ampa receptor trafficking to synapses in hippocampal pyramidal neurons. Cell 105, 331–343 (2001).

    Article  CAS  Google Scholar 

  24. Passafaro, M., Piech, V. & Sheng, M. Subunit-specific temporal and spatial patterns of AMPA receptor exocytosis in hippocampal neurons. Nat. Neurosci. 4, 917–926 (2001).

    Article  CAS  Google Scholar 

  25. Hayashi, Y. et al. Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science 287, 2262–2267 (2000).

    Article  CAS  Google Scholar 

  26. Zhu, J.J., Esteban, J.A., Hayashi, Y. & Malinow, R. Postnatal synaptic potentiation: delivery of GluR4-containing AMPA receptors by spontaneous activity. Nat. Neurosci. 3, 1098–1106 (2000).

    Article  CAS  Google Scholar 

  27. Roche, K.W., O'Brien, R.J., Mammen, A.L., Bernhardt, J. & Huganir, R.L. Characterization of multiple phosphorylation sites on the AMPA receptor GluR1 subunit. Neuron 16, 1179–1188 (1996).

    Article  CAS  Google Scholar 

  28. Carvalho, A.L., Kameyama, K. & Huganir, R.L. Characterization of phosphorylation sites on the glutamate receptor 4 subunit of the AMPA receptors. J. Neurosci. 19, 4748–4754 (1999).

    Article  CAS  Google Scholar 

  29. Banke, T.G. et al. Control of GluR1 AMPA receptor function by cAMP-dependent protein kinase. J. Neurosci. 20, 89–102 (2000).

    Article  CAS  Google Scholar 

  30. Lee, H.K., Barbarosie, M., Kameyama, K., Bear, M.F. & Huganir, R.L. Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity. Nature 405, 955–959 (2000).

    Article  CAS  Google Scholar 

  31. Ehlers, M.D. Reinsertion or degradation of AMPA receptors determined by activity-dependent endocytic sorting. Neuron 28, 511–525 (2000).

    Article  CAS  Google Scholar 

  32. Malinow, R. et al. Introduction of green fluorescent protein into hippocampal neurons through viral infection. in Imaging Living Cells (eds. Yuste, R., Lanni, F. & Konnerth, A.) 58.1–58.8 (Cold Spring Harbor Press, Cold Spring Harbor, 1999).

    Google Scholar 

  33. Shi, S.H. et al. Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. Science 284, 1811–1816 (1999).

    Article  CAS  Google Scholar 

  34. Chetkovich, D.M. & Sweatt, J.D. NMDA receptor activation increases cyclic AMP in area CA1 of the hippocampus via calcium/calmodulin stimulation of adenylyl cyclase. J. Neurochem. 61, 1933–1942 (1993).

    Article  CAS  Google Scholar 

  35. Roberson, E.D. & Sweatt, J.D. Transient activation of cyclic AMP-dependent protein kinase during hippocampal long-term potentiation. J. Biol. Chem. 271, 30436–30441 (1996).

    Article  CAS  Google Scholar 

  36. Daw, M.I. et al. PDZ proteins interacting with C-terminal GluR2/3 are involved in a PKC- dependent regulation of AMPA receptors at hippocampal synapses. Neuron 28, 873–886 (2000).

    Article  CAS  Google Scholar 

  37. Kim, C.H., Chung, H.J., Lee, H.K. & Huganir, R.L. Interaction of the AMPA receptor subunit GluR2/3 with PDZ domains regulates hippocampal long-term depression. Proc. Natl. Acad. Sci. USA 98, 11725–11730 (2001).

    Article  CAS  Google Scholar 

  38. Zhu, J.J., Qin, Y., Zhao, M., Van Aelst, L. & Malinow, R. Ras and Rap control AMPA receptor trafficking during synaptic plasticity. Cell 110, 443–455 (2002).

    Article  CAS  Google Scholar 

  39. Colledge, M. et al. Targeting of PKA to glutamate receptors through a MAGUK-AKAP complex. Neuron 27, 107–119 (2000).

    Article  CAS  Google Scholar 

  40. Moita, M.A., Lamprecht, R., Nader, K. & LeDoux, J.E. A-kinase anchoring proteins in amygdala are involved in auditory fear memory. Nat. Neurosci. 5, 837–838 (2002).

    Article  CAS  Google Scholar 

  41. Otmakhova, N.A. & Lisman, J.E. D1/D5 dopamine receptor activation increases the magnitude of early long-term potentiation at CA1 hippocampal synapses. J. Neurosci. 16, 7478–7486 (1996).

    Article  CAS  Google Scholar 

  42. Gurden, H., Takita, M. & Jay, T.M. Essential role of D1 but not D2 receptors in the NMDA receptor-dependent long-term potentiation at hippocampal-prefrontal cortex synapses in vivo. J. Neurosci. 20, RC106 (2000).

    Article  CAS  Google Scholar 

  43. Thomas, M.J., Moody, T.D., Makhinson, M. & O'Dell, T.J. Activity-dependent beta-adrenergic modulation of low frequency stimulation induced LTP in the hippocampal CA1 region. Neuron 17, 475–482 (1996).

    Article  CAS  Google Scholar 

  44. Price, C.J., Kim, P. & Raymond, L.A. D1 dopamine receptor-induced cyclic AMP-dependent protein kinase phosphorylation and potentiation of striatal glutamate receptors. J. Neurochem. 73, 2441–2446 (1999).

    Article  CAS  Google Scholar 

  45. Snyder, G.L. et al. Regulation of phosphorylation of the GluR1 AMPA receptor in the neostriatum by dopamine and psychostimulants in vivo. J. Neurosci. 20, 4480–4488 (2000).

    Article  CAS  Google Scholar 

  46. Reed, T.M., Repaske, D.R., Snyder, G.L., Greengard, P. & Vorhees, C.V. Phosphodiesterase 1B knock-out mice exhibit exaggerated locomotor hyperactivity and DARPP-32 phosphorylation in response to dopamine agonists and display impaired spatial learning. J. Neurosci. 22, 5188–5197 (2002).

    Article  CAS  Google Scholar 

  47. Chao, S.Z., Lu, W., Lee, H.K., Huganir, R.L. & Wolf, M.E. D(1) dopamine receptor stimulation increases GluR1 phosphorylation in postnatal nucleus accumbens cultures. J. Neurochem. 81, 984–992 (2002).

    Article  CAS  Google Scholar 

  48. Yasuda, H., Barth, A.L., Stellwagen, D. & Malenka, R.C. A developmental switch in the signaling cascades for LTP induction. Nat. Neurosci. 6, 15–16 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank N. Dawkins-Pisani and J. Kuchibhotia for technical assistance. This work was supported by National Alliance for Research in Schizophrenia and Depression (NARSAD to J.E.), National Institutes of Health NS32827 (to R.M.), Alle Davis and Maxine Harrison Endowment (to R.M.), The Howard Hughes Medical Institute (to R.L.H.) and National Institutes of Health NS36715 (to R.L.H.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to José A. Esteban or Roberto Malinow.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1.

Specificity of GluR4 phospho-specific antibody. (a) Rat cerebellum P2 fraction was prepared and resolved by SDS-PAGE. Membranes were treated with l phosphatase (1,2000 U/ml) or control solution and then blocked with each peptide (1mg/ml) as indicated. Membranes were then probed with anti GluR4 phospho-S842 specific antibody and reprobed with anti C-terminus antibody. (b) GluR4 full length constructs (wild type or S842A mutant) were transfected into HEK293T cells. After ~48hrs, cells were treated with forskolin (20 μM, 15min at 37 ºC) or vehicle (DMSO). Cell lysates were prepared and tested with anti-GluR4 C-terminus antibody and phospho-S842 specific antibody by western blotting. (JPG 33 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Esteban, J., Shi, SH., Wilson, C. et al. PKA phosphorylation of AMPA receptor subunits controls synaptic trafficking underlying plasticity. Nat Neurosci 6, 136–143 (2003). https://doi.org/10.1038/nn997

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn997

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing