Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

EXP-1 is an excitatory GABA-gated cation channel

Abstract

γ-aminobutyric acid (GABA) mediates fast inhibitory neurotransmission by activating anion-selective ligand-gated ion channels. Although electrophysiological studies indicate that GABA may activate cation-selective ligand-gated ion channels in some cell types, such a channel has never been characterized at the molecular level. Here we show that GABA mediates enteric muscle contraction in the nematode Caenorhabditis elegans via the EXP-1 receptor, a cation-selective ligand-gated ion channel. The EXP-1 protein resembles ionotropic GABA receptor subunits in almost all domains. In the pore-forming domain of EXP-1, however, the residues that confer anion selectivity are exchanged for those that specify cation selectivity. When expressed in Xenopus laevis oocytes, EXP-1 forms a GABA receptor that is permeable to cations and not anions. We conclude that some of the excitatory functions assigned to GABA are mediated by cation channels rather than by anion channels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phenotypic characterization and molecular cloning of exp-1.
Figure 2: Sequence alignment of EXP-1 and GABA receptor subunits.
Figure 3: Expression pattern of the exp-1 gene.
Figure 4: EXP-1 is a unique member of the ionotropic GABA receptor family.
Figure 6: EXP-1 contains the molecular determinants for cation selectivity.
Figure 5: EXP-1 is a GABA-gated, cation-selective channel.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Bormann, J., Hamill, O.P. & Sakmann, B. Mechanism of anion permeation through channels gated by glycine and gamma-aminobutyric acid in mouse cultured spinal neurones. J. Physiol. 385, 243–286 (1987).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Cherubini, E., Gaiarsa, J.L. & Ben-Ari, Y. GABA: an excitatory transmitter in early postnatal life. Trends Neurosci. 14, 515–519 (1991).

    Article  CAS  PubMed  Google Scholar 

  3. Ben-Ari, Y. et al. GABAergic mechanisms in the CA3 hippocampal region during early postnatal life. Prog. Brain Res. 83, 313–321 (1990).

    Article  CAS  PubMed  Google Scholar 

  4. Kaila, K., Lamsa, K., Smirnov, S., Taira, T. & Voipio, J. Long-lasting GABA-mediated depolarization evoked by high-frequency stimulation in pyramidal neurons of rat hippocampal slice is attributable to a network-driven, bicarbonate-dependent K+ transient. J. Neurosci. 17, 7662–7672 (1997).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Staley, K.J., Soldo, B.L. & Proctor, W.R. Ionic mechanisms of neuronal excitation by inhibitory GABAA receptors. Science 269, 977–981 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Perkins, K.L. Cl accumulation does not account for the depolarizing phase of the synaptic GABA response in hippocampal pyramidal cells. J. Neurophysiol. 82, 768–777 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Goldmakher, G.V. & Moss, R.L. A subset of periglomerular neurons in the rat accessory olfactory bulb may be excited by GABA through a Na+-dependent mechanism. Brain Res. 871, 7–15 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Swensen, A.M. et al. GABA and responses to GABA in the stomatogastric ganglion of the crab Cancer borealis. J. Exp. Biol. 203, 2075–2092 (2000).

    CAS  PubMed  Google Scholar 

  9. Norekian, T.P. GABAergic excitatory synapses and electrical coupling sustain prolonged discharges in the prey capture neural network of Clione limacina. J. Neurosci. 19, 1863–1875 (1999).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Yarowsky, P.J. & Carpenter, D.O. Receptors for gamma-aminobutyric acid (GABA) on Aplysia neurons. Brain Res. 144, 75–94 (1978).

    Article  CAS  PubMed  Google Scholar 

  11. McIntire, S.L., Jorgensen, E., Kaplan, J. & Horvitz, H.R. The GABAergic nervous system of Caenorhabditis elegans. Nature 364, 337–341 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Bamber, B.A., Beg, A.A., Twyman, R.E. & Jorgensen, E.M. The Caenorhabditis elegans unc-49 locus encodes multiple subunits of a heteromultimeric GABA receptor. J. Neurosci. 19, 5348–5359 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. White, J.G., Southgate, E., Thomson, J.N. & Brenner, S. Factors that determine connectivity in the nervous system of Caenorhabditis elegans. Cold Spring Harb. Symp. Quant. Biol. 48, 633–640 (1983).

    Article  PubMed  Google Scholar 

  14. Jin, Y., Jorgensen, E., Hartwieg, E. & Horvitz, H.R. The Caenorhabditis elegans gene unc-25 encodes glutamic acid decarboxylase and is required for synaptic transmission but not synaptic development. J. Neurosci. 19, 539–548 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Thomas, J.H. Genetic analysis of defecation in Caenorhabditis elegans. Genetics 124, 855–872 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. McIntire, S.L., Jorgensen, E. & Horvitz, H.R. Genes required for GABA function in Caenorhabditis elegans. Nature 364, 334–337 (1993).

    Article  CAS  PubMed  Google Scholar 

  17. Betz, H. Ligand-gated ion channels in the brain: the amino acid receptor superfamily. Neuron 5, 383–392 (1990).

    Article  CAS  PubMed  Google Scholar 

  18. Reiner, D.J. & Thomas, J.H. Reversal of a muscle response to GABA during C. elegans male development. J. Neurosci. 15, 6094–6102 (1995).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Karlin, A. & Akabas, M.H. Toward a structural basis for the function of nicotinic acetylcholine receptors and their cousins. Neuron 15, 1231–1244 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Langosch, D., Thomas, L. & Betz, H. Conserved quaternary structure of ligand-gated ion channels: the postsynaptic glycine receptor is a pentamer. Proc. Natl. Acad. Sci. USA 85, 7394–7398 (1988).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Boileau, A.J., Newell, J.G. & Czajkowski, C. GABAA receptor beta 2 Tyr97 and Leu99 line the GABA-binding site. Insights into mechanisms of agonist and antagonist actions. J. Biol. Chem. 277, 2931–2937 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Wagner, D.A. & Czajkowski, C. Structure and dynamics of the GABA binding pocket: A narrowing cleft that constricts during activation. J. Neurosci. 21, 67–74 (2001).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Leonard, R.J., Labarca, C.G., Charnet, P., Davidson, N. & Lester, H.A. Evidence that the M2 membrane-spanning region lines the ion channel pore of the nicotinic receptor. Science 242, 1578–1581 (1988).

    Article  CAS  PubMed  Google Scholar 

  24. Akabas, M.H., Kaufmann, C., Archdeacon, P. & Karlin, A. Identification of acetylcholine receptor channel-lining residues in the entire M2 segment of the alpha subunit. Neuron 13, 919–927 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Barnard, E.A. The molecular biology of GABAA receptors and their structural determinants. Adv. Biochem. Psychopharmacol. 48, 1–16 (1995).

    CAS  PubMed  Google Scholar 

  26. Galzi, J.L. et al. Mutations in the channel domain of a neuronal nicotinic receptor convert ion selectivity from cationic to anionic. Nature 359, 500–505 (1992).

    Article  CAS  PubMed  Google Scholar 

  27. Weber, W. Ion currents of Xenopus laevis oocytes: state of the art. Biochim. Biophys. Acta. 1421, 213–233 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Sieghart, W. Structure and pharmacology of gamma-aminobutyric acid A receptor subtypes. Pharmacol. Rev. 47, 181–234 (1995).

    CAS  PubMed  Google Scholar 

  29. Wang, T.L., Hackam, A.S., Guggino, W.B. & Cutting, G.R. A single amino acid in gamma-aminobutyric acid rho 1 receptors affects competitive and noncompetitive components of picrotoxin inhibition. Proc. Natl. Acad. Sci. USA 92, 11751–11755 (1995).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Zhang, D., Pan, Z.H., Zhang, X., Brideau, A.D. & Lipton, S.A. Cloning of a gamma-aminobutyric acid type C receptor subunit in rat retina with a methionine residue critical for picrotoxinin channel block. Proc. Natl. Acad. Sci. USA 92, 11756–11760 (1995).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Gurley, D., Amin, J., Ross, P.C., Weiss, D.S. & White, G. Point mutations in the M2 region of the alpha, beta, or gamma subunit of the GABAA channel that abolish block by picrotoxin. Receptors Channels 3, 13–20 (1995).

    CAS  PubMed  Google Scholar 

  32. Varanda, W.A. et al. The acetylcholine receptor of the neuromuscular junction recognizes mecamylamine as a noncompetitive antagonist. Mol. Pharmacol. 28, 128–137 (1985).

    CAS  PubMed  Google Scholar 

  33. Zhang, W., Han, X.Y., Wong, S.M. & Takeuchi, H. Pharmacologic characteristics of excitatory gamma-amino-butyric acid (GABA) receptors in a snail neuron. Gen. Pharmacol. 28, 45–53 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Imoto, K. et al. Rings of negatively charged amino acids determine the acetylcholine receptor channel conductance. Nature 335, 645–648 (1988).

    Article  CAS  PubMed  Google Scholar 

  35. Lester, H.A. The permeation pathway of neurotransmitter-gated ion channels. Annu. Rev. Biophys. Biomol. Struct. 21, 267–292 (1992).

    Article  CAS  PubMed  Google Scholar 

  36. Wilson, G.G. & Karlin, A. The location of the gate in the acetylcholine receptor channel. Neuron 20, 1269–1281 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Xu, M. & Akabas, M.H. Identification of channel-lining residues in the M2 membrane-spanning segment of the GABAA receptor alpha1 subunit. J. Gen. Physiol. 107, 195–205 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Keramidas, A., Moorhouse, A.J., Pierce, K.D., Schofield, P.R. & Barry, P.H. Cation-selective mutations in the M2 domain of the inhibitory glycine receptor channel reveal determinants of ion-charge selectivity. J. Gen. Physiol. 119, 393–410 (2002).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Gunthorpe, M.J. & Lummis, S.C. Conversion of the ion selectivity of the 5-HT(3a) receptor from cationic to anionic reveals a conserved feature of the ligand-gated ion channel superfamily. J. Biol. Chem. 276, 10977–10983 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Keramidas, A., Moorhouse, A.J., French, C.R., Schofield, P.R. & Barry, P.H. M2 pore mutations convert the glycine receptor channel from being anion- to cation-selective. Biophys. J. 79, 247–259 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Langosch, D. et al. Decreased agonist affinity and chloride conductance of mutant glycine receptors associated with human hereditary hyperekplexia. Embo J. 13, 4223–4228 (1994).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Moorhouse, A.J., Keramidas, A., Zaykin, A., Schofield, P.R. & Barry, P.H. Single channel analysis of conductance and rectification in cation-selective, mutant glycine receptor channels. J. Gen. Physiol. 119, 411–425 (2002).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Ortells, M.O. & Lunt, G.G. Evolutionary history of the ligand-gated ion-channel superfamily of receptors. Trends Neurosci. 18, 121–127 (1995).

    Article  CAS  PubMed  Google Scholar 

  44. Mello, C.C., Kramer, J.M., Stinchcomb, D. & Ambros, V. Efficient gene transfer in C. elegans: extrachromosomal maintenance and integration of transforming sequences. Embo J. 10, 3959–3970 (1991).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Clark, S.G., Lu, X. & Horvitz, H.R. The Caenorhabditis elegans locus lin-15, a negative regulator of a tyrosine kinase signaling pathway, encodes two different proteins. Genetics 137, 987–997 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Sigel, E., Baur, R., Kellenberger, S. & Malherbe, P. Point mutations affecting antagonist affinity and agonist dependent gating of GABAA receptor channels. Embo J. 11, 2017–2023 (1992).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Boileau, A.J., Evers, A.R., Davis, A.F. & Czajkowski, C. Mapping the agonist binding site of the GABAA receptor: evidence for a beta-strand. J. Neurosci. 19, 4847–4854 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Westh-Hansen, S.E. et al. Decreased agonist sensitivity of human GABAA receptors by an amino acid variant, isoleucine to valine, in the alpha1 subunit. Eur. J. Pharmacol. 329, 253–257 (1997).

    Article  CAS  PubMed  Google Scholar 

  49. Westh-Hansen, S.E. et al. Arginine residue 120 of the human GABAA receptor alpha 1, subunit is essential for GABA binding and chloride ion current gating. Neuroreport 10, 2417–2421 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Amin, J. & Weiss, D.S. GABAA receptor needs two homologous domains of the beta-subunit for activation by GABA but not by pentobarbital. Nature 366, 565–569 (1993).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank K. Schuske for cosmid injections and helpful advice, and M.W. Davis for full-length cDNA predictions, technical assistance and critical readings of this manuscript. The alleles n2570, n2641 and n2676 were isolated in the laboratory of B. Horvitz. We thank J. Thomas for the sa6 allele, discussions and encouragement. A. Coulson and the Sanger Center provided cosmid clones. We thank M. Hollmann for the pSGEM expression vector. We thank the Olivera, McIntosh and Yoshikami labs for X. laevis oocyte isolation and Z. Altun for cell identification. This work was supported by a National Institutes of Health Grant (E.M.J.). A.A.B. is supported by an Epilepsy Foundation of America predoctoral fellowship and a University of Utah predoctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik M Jorgensen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beg, A., Jorgensen, E. EXP-1 is an excitatory GABA-gated cation channel. Nat Neurosci 6, 1145–1152 (2003). https://doi.org/10.1038/nn1136

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1136

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing