Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transient neural activity in human parietal cortex during spatial attention shifts

Abstract

Observers viewing a complex visual scene selectively attend to relevant locations or objects and ignore irrelevant ones. Selective attention to an object enhances its neural representation in extrastriate cortex, compared with those of unattended objects, via top-down attentional control signals. The posterior parietal cortex is centrally involved in this control of spatial attention. We examined brain activity during attention shifts using rapid, event-related fMRI of human observers as they covertly shifted attention between two peripheral spatial locations. Activation in extrastriate cortex increased after a shift of attention to the contralateral visual field and remained high during sustained contralateral attention. The time course of activity was substantially different in posterior parietal cortex, where transient increases in activation accompanied shifts of attention in either direction. This result suggests that activation of the parietal cortex is associated with a discrete signal to shift spatial attention, and is not the source of a signal to continuously maintain the current attentive state.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Task and predictions.
Figure 2: Pattern of activation for a single participant resulting from a contrast specifying that the hold-contralateral and the shift-to-contralateral beta weights were greater than the hold-ipsilateral and the shift-to-ipsilateral beta weights.
Figure 3: Group random-effects analysis examining the consequences of directing attention to the left and right target streams.
Figure 4: Pattern of activation from a single participant identified with a contrast between the shift and hold beta weights.
Figure 5: Significant group activations from regions identified by contrasting shift and hold events in a group random effects GLM.
Figure 6: (a) Areas in right ITG and left IFS that exhibited a main effect of shifting attention and a main effect of location.
Figure 7: Pattern of activation from a subset of eight subjects who participated in the run-length version of the paradigm (Methods).

Similar content being viewed by others

References

  1. Desimone, R. & Duncan, J. Neural mechanisms of selective visual attention. Ann. Rev. Neurosci. 18, 193–222 (1995).

    Article  CAS  PubMed Central  Google Scholar 

  2. Yantis, S. in Attention (ed. Pashler, H.) 223–256 (Psychology Press, East Sussex, UK, 1998).

    Google Scholar 

  3. Kastner, S. & Ungerleider, L.G. Mechanisms of visual attention in the human cortex. Ann. Rev. Neurosci. 23, 315–341 (2000).

    Article  CAS  PubMed Central  Google Scholar 

  4. Kanwisher, N. & Wojciulik, E. Visual attention: insights from brain imaging. Nat. Rev. Neurosci. 1, 91–100 (2000).

    Article  CAS  PubMed Central  Google Scholar 

  5. Corbetta, M. & Shulman, G.L. Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 3, 215–229 (2002).

    Article  Google Scholar 

  6. Moran, J. & Desimone, R. Selective attention gates visual processing in the extrastriate cortex. Science 229, 782–784 (1985).

    Article  CAS  Google Scholar 

  7. Reynolds, J.H., Chelazzi, L. & Desimone, R. Competitive mechanisms subserve attention in macaque areas V2 and V4. J. Neurosci. 19, 1736–1753 (1999).

    Article  CAS  PubMed Central  Google Scholar 

  8. Kastner, S., De Weerd, P., Desimone, R. & Ungerleider, L.G. Mechanisms of directed attention in the human extrastriate cortex as revealed by functional MRI. Science 282, 108–111 (1998).

    Article  CAS  Google Scholar 

  9. Motter, B.C. Focal attention produces spatially selective processing in visual cortical areas V1, V2 and V4 in the presence of competing stimuli. J. Neurophysiol. 70, 909–919 (1993).

    Article  CAS  Google Scholar 

  10. Motter, B.C. Neural correlates of feature selective memory and pop-out in extrastriate area V4. J. Neurosci. 14, 2190–2199 (1994).

    Article  CAS  PubMed Central  Google Scholar 

  11. Treue, S. & Maunsell, J.H.R. Attentional modulation of visual motion processing in cortical areas MT and MST. Nature 382, 539–541 (1996).

    Article  CAS  Google Scholar 

  12. Connor, C.E., Preddie, D.C., Gallant, J.L. & Van Essen, D.C. Spatial attention effects in macaque area V4. J. Neurosci. 17, 3201–3214 (1997).

    Article  CAS  PubMed Central  Google Scholar 

  13. Corbetta, M., Miezin, F.M., Dobmeyer, S., Shulman, G.L. & Petersen, S.E. Attentional modulation of neural processing of shape, color and velocity in humans. Science 248, 1556–1559 (1990).

    Article  CAS  PubMed Central  Google Scholar 

  14. Heinze, H.J. et al. Combined spatial and temporal imaging of brain activity during visual selective attention in humans. Nature 372, 543–546 (1994).

    Article  CAS  Google Scholar 

  15. O'Craven, K.M., Rosen, B.R., Kwong, K.K., Treisman, A. & Savoy, R.L. Voluntary attention modulates fMRI activity in human MT-MST. Neuron 18, 591–598 (1997).

    Article  CAS  PubMed Central  Google Scholar 

  16. Tootell, R.B.H. et al. The retinotopy of visual spatial attention. Neuron 21, 1409–1422 (1998).

    Article  CAS  PubMed Central  Google Scholar 

  17. Gandhi, S.P., Heeger, D.J. & Boynton, G.M. Spatial attention affects brain activity in human primary visual cortex. Proc. Natl. Acad. Sci. USA 96, 3314–3319 (1999).

    Article  CAS  PubMed Central  Google Scholar 

  18. Brefczynski, J.A. & DeYoe, E.A. A physiological correlate of the “spotlight” of visual attention. Nat. Neurosci. 2, 370–374 (1999).

    Article  CAS  PubMed Central  Google Scholar 

  19. Bushnell, M.C., Goldberg, M.E. & Robinson, D.L. Behavioral enhancement of visual responses in monkey cerebral cortex. J. Neurophysiol. 46, 755–772 (1981).

    Article  CAS  Google Scholar 

  20. Colby, C.L., Duhamel, J.R. & Goldberg, M.E. Visual, presaccadic, and cognitive activation of single neurons in monkey lateral intraparietal area. J. Neurophysiol. 76, 2841–2852 (1996).

    Article  CAS  Google Scholar 

  21. Constantinidis, C. & Steinmetz, M.A. Neuronal activity in posterior parietal area 7a during the delay periods of a spatial memory task. J. Neurophysiol. 76, 1352–1355 (1996).

    Article  CAS  PubMed Central  Google Scholar 

  22. Constantinidis, C. & Steinmetz, M.A. Neuronal responses in area 7a to multiple-stimulus displays: I. Neurons encode the location of the salient stimulus. Cereb. Cortex 11, 581–591 (2001).

    Article  CAS  Google Scholar 

  23. Constantinidis, C. & Steinmetz, M.A. Neuronal responses in area 7a to multiple-stimulus displays: II. Responses are suppressed at the cued location. Cereb. Cortex 11, 592–597 (2001).

    Article  CAS  Google Scholar 

  24. Mesulam, M.M. A cortical network for directed attention and unilateral neglect. Ann. Neurol. 10, 309–325 (1981).

    Article  CAS  Google Scholar 

  25. Posner, M.I., Walker, J.A., Friedrich, F.J. & Rafal, R.D. Effects of parietal injury on covert orienting of attention. J. Neurosci. 4, 1863–1874 (1984).

    Article  CAS  Google Scholar 

  26. Corbetta, M., Miezin, F.M., Shulman, G.L., & Petersen, S.E. A PET study of visuospatial attention. J. Neurosci. 13, 1202–1226 (1993).

    Article  CAS  Google Scholar 

  27. Nobre, A.C. et al. Functional localization of the system for visuospatial attention using positron emission tomography. Brain 120, 515–533 (1997).

    Article  PubMed Central  Google Scholar 

  28. Culham, J.C. et al. Cortical fMRI activation produced by attentive tracking of moving targets. J. Neurophysiol. 80, 2657–2670 (1998).

    Article  CAS  Google Scholar 

  29. Coull, J.T. & Nobre, A.C. Where and when to pay attention: the neural systems for directing attention to spatial locations and to time intervals as revealed by both PET and fMRI. J. Neurosci. 18, 7426–7435 (1998).

    Article  CAS  Google Scholar 

  30. Wojciulik, E. & Kanwisher, N. The generality of parietal involvement in visual attention. Neuron 23, 747–764 (1999).

    Article  CAS  Google Scholar 

  31. Hopfinger, J.B., Buonocore, M.H. & Mangun, G.R. The neural mechanisms of top-down attentional control. Nat. Neurosci. 3, 284–291 (2000).

    Article  CAS  Google Scholar 

  32. Corbetta, M., Kincade, J.M., Ollinger, J.M., McAvoy, M.P. & Shulman, G.L. Voluntary orienting is dissociated from target detection in human posterior parietal cortex. Nat. Neurosci. 3, 292–297 (2000).

    Article  CAS  PubMed Central  Google Scholar 

  33. Rushworth, M.F.S., Paus, T. & Sipila, P.K. Attention systems and the organization of the human parietal cortex. J. Neurosci. 21, 5262–5271 (2001).

    Article  CAS  Google Scholar 

  34. Petersen, S., Robinson, D.L. & Morris, J.D. Contributions of the pulvinar to visual spatial attention. Neuropsychologia 25, 97–105 (1987).

    Article  CAS  PubMed Central  Google Scholar 

  35. Desimone, R., Wessinger, M., Thomas, L. & Schneider, W. Attentional control of visual perception: cortical and subcortical mechanisms. Cold Spr. Harb. Symp. Quant. Biol. 55, 963–971 (1990).

    Article  CAS  Google Scholar 

  36. LaBerge, D. & Buchsbaum, M.S. Positron emission tomographic measurements of pulvinar activity during an attention task. J. Neurosci. 10, 613–619 (1990).

    Article  CAS  PubMed Central  Google Scholar 

  37. Olshausen, B.A., Anderson, C.H. & Van Essen, D.C. A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information. J. Neurosci. 13, 4700–4719 (1993).

    Article  CAS  PubMed Central  Google Scholar 

  38. Goebel, R. in Advances in Neural Information Processing Systems 5 (eds. Giles, C. L., Hanson, S. J. & Cowan, J. D.) 903–910 (Morgan Kaufmann, San Mateo, California, 1993).

    Google Scholar 

  39. Sperling, G. & Reeves, A. in Attention and Performance VIII (ed. Nickerson, R.S.) 347–360 (Erlbaum, Hillsdale, NJ, 1980).

    Google Scholar 

  40. Reeves, A. & Sperling, G. Attention gating in short-term visual memory. Psych. Rev. 93, 180–206 (1986).

    Article  CAS  Google Scholar 

  41. Snyder, L.H., Batista, A.P. & Andersen, R.A. Coding of intention in the posterior parietal cortex. Nature 386, 167–170 (1997).

    Article  CAS  Google Scholar 

  42. Burock, M.A., Buckner, R.L., Woldorff, M.G., Rosen, B.R. & Dale, A.M. Randomized event-related experimental designs allow for extremely rapid presentation rates using functional MRI. Neuroreport 9, 3735–3739 (1998).

    Article  CAS  PubMed Central  Google Scholar 

  43. Miezin, F.M., Maccotta, L., Ollinger, J.M., Petersen, S.E. & Buckner, R.L. Characterizing the hemodynamic response: effects of presentation rate, sampling procedure, and the possibility of ordering brain activity based on relative timing. Neuroimage 11, 735–759 (2000).

    Article  CAS  PubMed Central  Google Scholar 

  44. Corbetta, M. et al. A common network of functional areas for attention and eye movements. Neuron 21, 761–773 (1998).

    Article  CAS  Google Scholar 

  45. Boynton, G.M., Engel, S.A., Glover, G.H. & Heeger, D.J. Linear systems analysis of functional magnetic resonance imaging in human V1. J. Neurosci. 16, 4207–4221 (1996).

    Article  CAS  PubMed Central  Google Scholar 

  46. Talairach, J. & Tournoux, P. Co-planar Stereotaxic Atlas of the Human Brain (Thieme, New York, 1988).

    Google Scholar 

Download references

Acknowledgements

We thank T. Brawner, J. Gillen and X. Golay for technical assistance and V. Lamme, J.B. Sala, and S. Slotnick for valuable suggestions. This study was supported by grants from the National Institute on Drug Abuse (R01-DA13165) to S.Y. and from the National Center for Research Resources, NIH (P41-RR15241) to the F.M. Kirby Research Center for Functional Brain Imaging (Kennedy Krieger Institute) in Baltimore. J.S. was supported by the German Academic Exchange Service, J.T.S. was supported by the National Eye Institute and the National Science Foundation, and R.L.C. was supported by the National Institute of Mental Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven Yantis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yantis, S., Schwarzbach, J., Serences, J. et al. Transient neural activity in human parietal cortex during spatial attention shifts. Nat Neurosci 5, 995–1002 (2002). https://doi.org/10.1038/nn921

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn921

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing