Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reversal of subjective temporal order due to arm crossing

An Erratum to this article was published on 01 December 2001

Abstract

How does the brain order successive events? Here we studied whether temporal order of two stimuli delivered in rapid succession, one to each hand, is determined before or after the stimuli are localized in space. When their arms were crossed, subjects could accurately report the temporal order, even when the interval between stimuli was as short as 70 ms. In most trials, subjects could also judge temporal order when their arms were crossed, but only if given adequate time (>1 s). At moderately short intervals (<300 ms), crossing the arms caused misreporting (that is, inverting) of the temporal order. Thus, at these intervals, the determining factor of temporal order was the spatial location of the hands. We suggest that it is not until the spatial locations of the hands are taken into account that the cutaneous signals from the respective hands are ordered in time.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Temporal order judgment in the crossed (filled red circles) and the uncrossed (open black circles) conditions.
Figure 2: The Gaussian flip model.
Figure 3: Reaction time in the temporal order judgment.
Figure 4: Temporal order judgment in eye-movement response tasks.
Figure 5: Temporal order judgment in six arm arrangements.
Figure 6: Temporal order judgment in the crossed conditions with (filled red circles) and without (open black circles) mutual contact of the arms.
Figure 7: Temporal order judgment of successive visual stimuli from hands.

Similar content being viewed by others

References

  1. Dassonville, P. Haptic localization and the internal representation of the hand in space. Exp. Brain Res. 106, 434–448 (1995)

    Article  CAS  Google Scholar 

  2. Cordo, P. J., Gurfinkel, V. S. & Levik, Y. Position sense during imperceptibly slow movements. Exp. Brain Res. 132, 1–9 (2000)

    Article  CAS  Google Scholar 

  3. Hocherman, S., Aharonson, D., Medalion, B. & Hocherman, I. Perception of the immediate extrapersonal space through proprioceptive inputs. Exp. Brain Res. 73, 256–262 (1988).

    Article  CAS  Google Scholar 

  4. Haggard, P., Newman, C., Blundell, J. & Andrew, H. The perceived position of the hand in space. Percept. Psychophys. 68, 363–377 (2000).

    Article  Google Scholar 

  5. Hirsh, I. J. & Sherrick, C. E. Perceived order in different sense modalities. J. Exp. Psychol. 62, 423–432 (1961).

    Article  CAS  Google Scholar 

  6. Pöppel, E. A hierarchical model of temporal perception. Trend Cogn. Sci. 1, 56–61 (1997).

    Article  Google Scholar 

  7. Sternberg, S. & Knoll, R. L. in Attention and Performance (ed. Kornblum, S.) 629–685 (Academic, New York, 1973).

    Google Scholar 

  8. Dennett, D. C. & Kinsbourne, M. Time and the observer: the where and when of consciousness in the brain. Behav. Brain Sci. 15, 183–247 (1992).

    Article  Google Scholar 

  9. Efron, R. The effect of handedness on the perception of simultaneity and temporal order. Brain 186, 261–284 (1963).

    Article  Google Scholar 

  10. Gibbon, J. & Rutschmann, R. Temporal order judgment and reaction time. Science 47, 413–415 (1969).

    Article  Google Scholar 

  11. Allan, L. G. The relationship between judgment of successiveness and judgment order. Percept. Psychophys . 18, 29–36 (1975).

    Article  Google Scholar 

  12. Ulrich, R. Threshold models of temporal order judgments evaluated by a ternary response task. Percept. Psychophys. 42, 224–239 (1987).

    Article  Google Scholar 

  13. Jaśkowski, P. Two-stage model for order discrimination. Percept. Psychophys. 50, 76–82 (1991).

    Article  Google Scholar 

  14. Simon, J. R., Hinrichs, J. V. & Craft, J. L. Auditory S-R compatibility: reaction time as a function of ear-hand correspondence and ear-response-location correspondence. J. Exp. Psychol. 86, 97–102 (1970).

    Article  CAS  Google Scholar 

  15. Kornblum, S., Hasbroucq, T. & Osman, A. Dimensional overlap: cognitive basis for stimulus-response compatibility—a model and taxonomy. Psychol. Rev. 97, 253–270 (1990).

    Article  CAS  Google Scholar 

  16. Simon, J. R. in Stimulus-Response Compatibility (eds. Proctor, R. W. & Reeve, T. G.) 31–86 (Elsevier, Amsterdam, 1990).

    Google Scholar 

  17. Axelrod, S., Thompson, L. W. & Cohen, L. D. Effects of senescence on the temporal resolution of somesthetic stimuli presented to one hand or both. J. Gerontol., 23,191–195 (1968).

    Article  CAS  Google Scholar 

  18. Driver, J. & Spence, C. Cross-modal links in spatial attention. Phil. Trans. R. Soc. Lond. B Biol. Sci. 353, 1319–1331 (1998).

    Article  CAS  Google Scholar 

  19. Groh, J. M. & Sparks, D. L. Saccades to somatosensory targets. I. Behavioral characteristics. J. Neurophysiol. 75, 412–427 (1996).

    Article  CAS  Google Scholar 

  20. Duhamel, J. R., Colby, C. L. & Goldberg, M. E. The updating of the representation of visual space in parietal cortex by intended eye movements. Science 255, 90–92 (1992).

    Article  CAS  Google Scholar 

  21. Colby, C. L. & Goldberg, M. E. Space and attention in parietal cortex. Annu. Rev. Neurosci. 22, 319–349 (1999)

    Article  CAS  Google Scholar 

  22. Groh, J. M. & Sparks, D. L. Saccades to somatosensory targets. III. Eye-position-dependent somatosensory activity in primate superior colliculus. J. Neurophysiol. 75, 439–453 (1996).

    Article  CAS  Google Scholar 

  23. Wolpert, D. M., Goodbody, S. J. & Husain, M. Maintaining internal representations: the role of the human superior parietal lobe. Nat. Neurosci. 1, 529–533 (1998).

    Article  CAS  Google Scholar 

  24. Obayashi, S., Tanaka, M. & Iriki, A. Subjective image of invisible hand coded by monkey intraparietal neurons. Neuroreport 11, 3499–3505 (2000).

    Article  CAS  Google Scholar 

  25. Graziano, M. S. A., Cooke, D. F. & Taylor, C. S. R. Coding the location of the arm by sight. Science 290, 1782–1786 (2000).

    Article  CAS  Google Scholar 

  26. Iwamura, Y., Iriki, A. & Tanaka, M. Bilateral hand representation in the postcentral somatosensory cortex. Nature 369, 554–556 (1994).

    Article  CAS  Google Scholar 

  27. Iwamura,Y. Hierarchical somatosensory processing. Curr. Opin. Neurobiol. 8, 522–528 (1998).

    Article  CAS  Google Scholar 

  28. Graziano, S. M. A., Xin, T. H. & Gross, C. G. Visuospatial properties of ventral premotor cortex. J. Neurophysiol. 77, 2268–2292 (1997).

    Article  CAS  Google Scholar 

  29. Graziano, S. M. A. Where is my arm? The relative role of vision and proprioception in the neuronal representation of limb position. Proc. Nat. Acad. Sci. USA 96, 10418–10421 (1999).

    Article  CAS  Google Scholar 

  30. Graziano, S. M. A. & Gross, C. G. Spatial maps for the control of movement. Curr. Opin. Neurobiol. 8, 195–201 (1998).

    Article  CAS  Google Scholar 

  31. Graziano, S. M. A. & Gross, C. G. A bimodal map of space: somatosensory receptive fields in the macaque putamen with corresponding visual receptive fields. Exp. Brain Res. 97, 96–109 (1993).

    Article  CAS  Google Scholar 

  32. Karhu, J. & Tesche, C. D. Simultaneous early processing of sensory input in human primary (SI) and secondary (SII) somatosensory cortices. J. Neurophysiol. 81, 2017–2025 (1999).

    Article  CAS  Google Scholar 

  33. Oldfield, R. C. The assessment and analysis of handedness: the Edinburgh Inventory. Neuropsychologia 9, 97–113 (1971).

    Article  CAS  Google Scholar 

  34. Geldard, F. A. & Sherrick, C. E. Space, time and touch. Sci. Am. 254, 84–89 (1986).

    Google Scholar 

  35. Shore, D. I., Spence, C. & Klein, R. M. Visual prior entry. Psychol. Sci. (in press).

  36. Linhart, H. & Zucchini, W. Model Selection (Wiley, New York, 1986).

    Google Scholar 

Download references

Acknowledgements

We thank F.A. Miles, K. Kawano, S. Phillips and K. Yamamoto for comments while preparing the manuscript, and K. Matsuda for technical assistance in measuring eye movements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeru Kitazawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamamoto, S., Kitazawa, S. Reversal of subjective temporal order due to arm crossing. Nat Neurosci 4, 759–765 (2001). https://doi.org/10.1038/89559

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/89559

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing