Journal home
Advance online publication
Current issue
Archive
Press releases
Supplements
Focuses
Guide to authors
Online submissionOnline submission
Permissions
For referees
Free online issue
Contact the journal
Subscribe
Advertising
work@npg
naturereprints
About this site
For librarians
 
NPG Resources
Nature
Nature Reviews Neuroscience
Nature Cell Biology
Nature Medicine
Neuroscience Gateway
UCSD-Nature Signaling Gateway
NPG Subject areas
Biotechnology
Cancer
Chemistry
Clinical Medicine
Dentistry
Development
Drug Discovery
Earth Sciences
Evolution & Ecology
Genetics
Immunology
Materials Science
Medical Research
Microbiology
Molecular Cell Biology
Neuroscience
Pharmacology
Physics
Browse all publications
Article
Nature Neuroscience  4, 724 - 731 (2001)
doi:10.1038/89512

Two different lateral amygdala cell populations contribute to the initiation and storage of memory

J. Christopher Repa, Jeff Muller, John Apergis, Theresa M. Desrochers, Yu Zhou & Joseph E. LeDoux

W.M. Keck Foundation Laboratory of Neurobiology, Center for Neural Science, New York University, 4 Washington Place, Room 809, New York, New York 10003, USA

Correspondence should be addressed to J. Christopher Repa jcrepa@cns.nyu.edu
Single-cell activity was recorded in the dorsal subnucleus of the lateral amygdala (LAd) of freely behaving rats during Pavlovian fear conditioning, to determine the relationship between neuronal activity and behavioral learning. Neuronal responses elicited by the conditioned stimulus typically increased before behavioral fear was evident, supporting the hypothesis that neural changes in LAd account for the conditioning of behavior. Furthermore, two types of these rapidly modified cells were found. Some, located in the dorsal tip of LAd, exhibited short-latency responses (<20 ms) that were only transiently changed. A second class of cells, most commonly found in ventral regions of LAd, had longer latency responses, but maintained enhanced responding throughout training and even through extinction. These anatomically distinct cells in LAd may be differentially involved in the initiation of learning and long-term memory storage.

 Top
Abstract
Previous | Next
Table of contents
Full textFull text
Download PDFDownload PDF
Send to a friendSend to a friend
Save this linkSave this link

natureevents

Figures & Tables
Export citation
natureproducts

Search buyers guide:

 
ADVERTISEMENT
 
Nature Neuroscience
ISSN: 1097-6256
EISSN: 1546-1726
Journal home | Advance online publication | Current issue | Archive | Press releases | Supplements | Focuses | For authors | Online submission | Permissions | For referees | Free online issue | About the journal | Contact the journal | Subscribe | Advertising | work@npg | naturereprints | About this site | For librarians
Nature Publishing Group, publisher of Nature, and other science journals and reference works©2001 Nature Publishing Group | Privacy policy