Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The cerebellum coordinates eye and hand tracking movements

Abstract

The cerebellum is thought to help coordinate movement. We tested this using functional magnetic resonance imaging (fMRI) of the human brain during visually guided tracking tasks requiring varying degrees of eye–hand coordination. The cerebellum was more active during independent rather than coordinated eye and hand tracking. However, in three further tasks, we also found parametric increases in cerebellar blood oxygenation signal (BOLD) as eye–hand coordination increased. Thus, the cerebellar BOLD signal has a non-monotonic relationship to tracking performance, with high activity during both coordinated and independent conditions. These data provide the most direct evidence from functional imaging that the cerebellum supports motor coordination. Its activity is consistent with roles in coordinating and learning to coordinate eye and hand movement.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tracking task.
Figure 2: Effect of eye–hand temporal offset on manual tracking performance.
Figure 3: Parametric analysis of BOLD related to eye–hand temporal offset.
Figure 4: Combined independent and temporal offset conditions.
Figure 5: Testing for non-monotonic BOLD signal.

Similar content being viewed by others

References

  1. Flourens, P. The Human Brain and Spinal Cord (eds. Clarke, E. & O'Malley, C. D.) 657–661 (Univ. California Press, Berkeley, 1968).

    Google Scholar 

  2. Bastian, A. J., Martin, T. A., Keating, J. G. & Thach, W. T. Cerebellar ataxia: abnormal control of interaction torques across multiple joints. J. Neurophysiol. 76, 492–509 (1996).

    Article  CAS  Google Scholar 

  3. Muller, F. & Dichgans, J. Dyscoordination of pinch and lift forces during grasp in patients with cerebellar lesions. Exp. Brain Res. 101, 485–492 (1994).

    Article  CAS  Google Scholar 

  4. Serrien, D. J. & Wiesendanger, M. Temporal control of a bimanual task in patients with cerebellar dysfunction. Neuropsychologia 38, 558–565 (2000).

    Article  CAS  Google Scholar 

  5. Van Donkelaar, P. & Lee, R. G. Interactions between the eye and hand motor systems: disruptions due to cerebellar dysfunction. J. Neurophysiol. 72, 1674–1685 (1994).

    Article  CAS  Google Scholar 

  6. Vercher, J. L. & Gauthier, G. M. Cerebellar involvement in the coordination control of the oculo-manual tracking system: effects of cerebellar dentate nucleus lesion. Exp. Brain Res. 73, 155–166 (1988).

    Article  CAS  Google Scholar 

  7. Miall, R. C. The cerebellum, predictive control and motor coordination. Novartis Found. Symp. 218, 272–290 (1998).

    CAS  PubMed  Google Scholar 

  8. Miall, R. C., Imamizu, H. & Miyauchi, S. Activation of the cerebellum in coordinated eye and hand tracking movements: an fMRI study. Exp. Brain Res. 135, 22–33 (2000).

    Article  CAS  Google Scholar 

  9. Marple-Horvat, D. E., Criado, J. M. & Armstrong, D. M. Neuronal activity in the lateral cerebellum of the cat related to visual stimuli at rest, visually guided step modification, and saccadic eye movements. J. Physiol. (Lond.) 506, 489–514 (1998).

    Article  CAS  Google Scholar 

  10. Abrams, R. A., Meyer, D. E. & Kornblum, S. Eye-hand coordination: oculomotor control in rapid aimed limb movements. J. Exp. Psychol. 16, 248–267 (1990).

    CAS  Google Scholar 

  11. Koken, P. W. & Erkelens, C. J. Influences of hand movements on eye movements in tracking tasks in man. Exp. Brain Res. 88, 657–664 (1992).

    Article  CAS  Google Scholar 

  12. Vercher, J. L., Magenes, G., Prablanc, C. & Gauthier, G. M. Eye–head–hand coordination in pointing at visual targets: spatial and temporal analysis. Exp. Brain Res. 99, 507–523 (1994).

    Article  CAS  Google Scholar 

  13. Biguer, B., Prablanc, C. & Jeannerod, M. The contribution of coordinated eye and head movements in hand pointing accuracy. Exp. Brain Res. 55, 462–469 (1984).

    Article  CAS  Google Scholar 

  14. Petit, L. & Haxby, J. V. Functional anatomy of pursuit eye movements in humans as revealed by fMRI. J. Neurophysiol. 82, 463–471 (1999).

    Article  CAS  Google Scholar 

  15. Berman, R. A. et al. Cortical networks subserving pursuit and saccadic eye movements in humans: an FMRI study. Hum. Brain Mapp. 8, 209–225 (1999).

    Article  CAS  Google Scholar 

  16. Nishitani, N. Cortical visuomotor integration during eye pursuit and eye-finger pursuit. J. Neurosci. 19, 2647–2657 (1999).

    Article  CAS  Google Scholar 

  17. Grafton, S. T., Mazziotta, J. C., Woods, R. P. & Phelps, M. E. Human functional anatomy of visually guided finger movements. Brain 115, 565–587 (1992).

    Article  Google Scholar 

  18. Jueptner, M., Jenkins, I. H., Brooks, D. J., Frackowiak, R. S. J. & Passingham, R. E. The sensory guidance of movement: a comparison of the cerebellum and basal ganglia. Exp. Brain Res. 112, 462–474 (1996).

    Article  CAS  Google Scholar 

  19. Turner, R. S., Grafton, S. T., Votaw, J. R., DeLong, M. R. & Hoffman, J. M. Motor subcircuits mediating the control of movement velocity: a PET study. J. Neurophysiol. 80, 2162–2176 (1998).

    Article  CAS  Google Scholar 

  20. Jenkins, I. H., Brooks, D. J., Nixon, P. D., Frackowiak, R. S. J. & Passingham, R. E. Motor sequence learning: a study with positron emission tomography. J. Neurosci. 14, 3775–3790 (1994).

    Article  CAS  Google Scholar 

  21. Clower, D. M. et al. Role of posterior parietal cortex in the recalibration of visually guided reaching. Nature 383, 618–621 (1996).

    Article  CAS  Google Scholar 

  22. Imamizu, H. et al. Human cerebellar activity reflecting an acquired internal model of a new tool. Nature 403, 192–195 (2000).

    Article  CAS  Google Scholar 

  23. Flament, D., Ellermann, J. M., Kim, S. G., Ugurbil, K. & Ebner, T. J. Functional magnetic resonance imaging of cerebellar activation during the learning of a visuomotor dissociation task. Hum. Brain Mapp. 4, 210–226 (1996).

    Article  CAS  Google Scholar 

  24. Allen, G., Buxton, R. B., Wong, E. C., Courchesne, E. Attentional activation of the cerebellum independent of motor involvement. Science 275, 1940–1943 (1997).

    Article  CAS  Google Scholar 

  25. Ivry, R. Cerebellar timing systems. Int. Rev. Neurobiol. 41, 555–573 (1997).

    Article  CAS  Google Scholar 

  26. Shadmehr, R. & Holcomb, H. H. Neural correlates of motor memory consolidation. Science 277, 821–825 (1997).

    Article  CAS  Google Scholar 

  27. Roland, P. E. & Gulyas, B. Visual memory, visual imagery, and visual recognition of large field patterns by the human brain: functional anatomy by positron emission tomography. Cereb. Cortex 5, 79–93 (1995).

    Article  CAS  Google Scholar 

  28. Fletcher, P. C., Shallice, T., Frith, C. D., Frackowiak, R. S. & Dolan, R. J. Brain activity during memory retrieval. The influence of imagery and semantic cueing. Brain 119, 1587–1596 (1996).

    Article  Google Scholar 

  29. Ghaem, O. et al. Mental navigation along memorized routes activates the hippocampus, precuneus, and insula. Neuroreport 8, 739–744 (1997).

    Article  CAS  Google Scholar 

  30. Tamada, T., Miyauchi, S., Imamizu, H., Yoshioka, T. & Kawato, M. Cerebro-cerebellar functional connectivity revealed by the laterality index in tool-use learning. Neuroreport 10, 325–331 (1999).

    Article  CAS  Google Scholar 

  31. Van Donkelaar, P., Lee, R. G. & Gellman, R. S. The contribution of retinal and extraretinal signals to manual tracking movements. Exp. Brain Res. 99, 155–163 (1994).

    Article  CAS  Google Scholar 

  32. Ferraina, S. et al. Visual control of hand-reaching movement: activity in parietal area 7m. Eur. J. Neurosci. 9, 1090–1095 (1997).

    Article  CAS  Google Scholar 

  33. Vercher, J. L. et al. Self-moved target eye tracking in control and deafferented subjects: roles of arm motor command and proprioception in arm–eye coordination. J. Neurophysiol. 76,1133–1144 (1996).

    Article  CAS  Google Scholar 

  34. Witney, A. G., Goodbody, S. J. & Wolpert, D. M. Predictive motor learning of temporal delays. J. Neurophysiol. 82, 2039–2048 (1999).

    Article  CAS  Google Scholar 

  35. Miall, R. C. & Wolpert, D. M. Forward models for physiological motor control. Neural Net. 9, 1265–1279 (1996).

    Article  Google Scholar 

  36. Pelisson, D., Prablanc, C., Goodale, M. A. & Jeannerod, M. Visual control of reaching movements without vision of the limb. II. Evidence of fast unconscious processes correcting the trajectory of the hand to the final position of a double-step stimulus. Exp. Brain Res. 62, 303–311 (1986).

    Article  CAS  Google Scholar 

  37. Lewis, R. F., Gaymard, B. M. & Tamargo, R. J. Efference copy provides the eye position information required for visually guided reaching. J. Neurophysiol. 80, 1605–1608 (1998).

    Article  CAS  Google Scholar 

  38. Miall, R. C., Weir, D. J. & Stein, J. F. Visuomotor tracking with delayed visual feedback. Neuroscience 16, 511–520 (1985).

    Article  CAS  Google Scholar 

  39. Vercher, J. L. & Gauthier, G. M. Oculo-manual coordination control: ocular and manual tracking of visual targets with delayed visual feedback of the hand motion. Exp. Brain Res. 90, 599–609 (1992).

    Article  CAS  Google Scholar 

  40. Wolpert, D. M. Multiple paired forward and inverse models for motor control. Neural Net. 11, 1317–1329 (1998).

    Article  CAS  Google Scholar 

  41. Waldvogel, D., van Gelderen, P., Ishii, K. & Hallett, M. The effect of movement amplitude on activation in functional magnetic resonance imaging studies. J. Cereb. Blood Flow Metab. 19, 1209–1212 (1999).

    Article  CAS  Google Scholar 

  42. Vanmeter, J. W. et al. Parametric analysis of functional neuroimages– application to a variable-rate motor task. Neuroimage 2, 273–283 (1995).

    Article  CAS  Google Scholar 

  43. Jenkins, I. H., Passingham, R. E. & Brooks, D. J. The effect of movement frequency on cerebral activation: a positron emission tomography study. J. Neurol. Sci. 151, 195–205 (1997).

    Article  CAS  Google Scholar 

  44. Winstein, C. J., Grafton, S. T. & Pohl, P. S. Motor task difficulty and brain activity: Investigation of goal-directed reciprocal aiming using positron emission tomography. J. Neurophysiol. 77, 1581–1594 (1997).

    Article  CAS  Google Scholar 

  45. Poulton, E. C. Tracking Skill and Manual Control (Academic, New York, 1974).

    Google Scholar 

  46. Woods, R. P., Grafton, S. T., Holmes, C. J., Cherry, S. R. & Mazziota, J. C. Automated image registration: I. General methods and intrasubject, intramodality validation. J. Comput. Assist. Tomogr. 22, 141–154 (1998).

    Google Scholar 

  47. Friston, K. J., Worsley, K. J., Frackowiak, R. S. J., Mazziota, J. C. & Evans, A. C. Assessing the significance of focal activations using their spatial extent. Hum. Brain Mapp. 1, 214–220 (1994).

    Google Scholar 

  48. Talairach, J. & Tournoux, P. Co-Planar Stereotaxic Atlas of the Human Brain (Thieme, Stuttgart, 1988).

    Google Scholar 

  49. Schmahmann, J. D. et al. Three-dimensional MRI atlas of the human cerebellum in proportional stereotaxic space. Neuroimage 10, 233–260 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Wellcome Trust, JST ERATO, the Oxford FMRIB and MRC Cognitive Neuroscience Centers for help and facilities, and G. Swait and N. Jenkinson for supplementary data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. C. Miall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miall, R., Reckess, G. & Imamizu, H. The cerebellum coordinates eye and hand tracking movements. Nat Neurosci 4, 638–644 (2001). https://doi.org/10.1038/88465

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/88465

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing