Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The neuronal naturalist: watching neurons in their native habitat

Abstract

Dynamic processes of neural development, such as migrations of precursor cells, growth of axons and dendrites, and formation and modification of synapses, can be fully analyzed only with techniques that monitor changes over time. Although there has been long-standing motivation for following cellular and synaptic events in vivo (intravital microscopy), until recently few preparations have been studied, and then often only with great effort. Innovations in low-light and laser-scanning microscopies, coupled with developments of new dyes and of genetically encoded indicators, have increased both the breadth and depth of in situ imaging approaches. Here we present the motivations and challenges for dynamic imaging methods, offer some illustrative examples and point to future opportunities with emerging technologies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Time-lapse imaging of two neuromuscular junctions (NMJ 1 and NMJ 2) viewed in vivo on postnatal days 7, 8 and 9 in a transgenic mouse that expresses YFP in its motor axons.
Figure 2: Frames from an intravital microscopy time-lapse study of cell migration in the neural crest.
Figure 3: Vital imaging of neuronal spines in a hippocampal slice in culture in 4-D (3-D movie over time).

Similar content being viewed by others

References

  1. Hollander, H. [Method of microscopic observation of a single motor nerve fiber in the living frog]. Z. Wiss. Mikrosk. 67, 156–170 (1966).

    CAS  PubMed  Google Scholar 

  2. Magrassi, L., Purves, D. & Lichtman, J. W. Fluorescent probes that stain living nerve terminals. J. Neurosci. 7,1207–1214 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Yoshikami, D. & Okun, L. M. Staining of living presynaptic nerve terminals with selective fluorescent dyes. Nature 310, 53–56 (1984).

    CAS  PubMed  Google Scholar 

  4. Lichtman, J. W., Wilkinson, R. S. & Rich, M. M. Multiple innervation of tonic endplates revealed by activity-dependent uptake of fluorescent probes. Nature 314, 357–359 (1985).

    CAS  PubMed  Google Scholar 

  5. Purves, D., Voyvodic, J. T., Magrassi, L. & Yawo, H. Nerve terminal remodeling visualized in living mice by repeated examination of the same neuron. Science 238, 1122–1126 (1987).

    CAS  PubMed  Google Scholar 

  6. O'Rourke, N. A. & Fraser, S. E. Dynamic aspects of retinotectal map formation revealed by a vital-dye fiber-tracing technique. Dev. Biol. 114, 265–276 (1986).

    CAS  PubMed  Google Scholar 

  7. Purves, D. & Hadley, R. D. Changes in the dendritic branching of adult mammalian neurones revealed by repeated imaging in situ. Nature 315, 404–406 (1985).

    CAS  PubMed  Google Scholar 

  8. Harris, L. W. & Purves, D. Rapid remodeling of sensory endings in the corneas of living mice. J. Neurosci. 9, 2210–2214 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Pomeroy, S. L. & Purves, D. Neuronglia relationships observed over intervals of several months in living mice. J. Cell Biol. 107, 1167–1175 (1988).

    CAS  PubMed  Google Scholar 

  10. Lichtman, J. W., Magrassi, L. & Purves, D. Visualization of neuromuscular junctions over periods of several months in living mice. J. Neurosci. 7, 1215–1222 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Harris, W. A., Holt, C. E. & Bonhoeffer, F. Retinal axons with and without their stomata, growing to and arborizing in the tectum of Xenopus embryos: a time lapse video study of single fibres in vivo. Development 101, 123–133 (1987).

    CAS  PubMed  Google Scholar 

  12. O'Rourke, N. A. & Fraser, S. E. Dynamic changes in optic fiber terminal arbors lead to retinotopic map formation: an in vivo confocal microscope study. Neuron 5, 159–171 (1990).

    CAS  PubMed  Google Scholar 

  13. Wallingford, J. B., Ewald, A. J., Harland, R. M. & Fraser, S. E. Calcium signaling during convergent extension in Xenopus. Curr. Biol. 11, 652–661 (2001).

    CAS  PubMed  Google Scholar 

  14. Jontes, J. D., Buchanan, J. & Smith, S. J. Growth cone and dendritic dynamics in zebrafish embryos: early events in synaptogenesis imaged in vivo. Nat. Neurosci. 3, 231–237 (2000).

    CAS  PubMed  Google Scholar 

  15. Herrera, A. A., Banner, L. R. & Nagaya, N. Repeated, in vivo observation of frog neuromuscular junctions: remodelling involves concurrent growth and retraction. J. Neurocytol. 19, 85–99 (1990).

    CAS  PubMed  Google Scholar 

  16. Chen, L. L., Folsom, D. B. & Ko, C. P. The remodeling of synaptic extracellular matrix and its dynamic relationship with nerve terminals at living frog neuromuscular junctions. J. Neurosci. 11, 2920–2930 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Langenfeld-Oster, B., Dorlochter, M. & Wernig, A. Regular and photodamage-enhanced remodelling in vitally stained frog and mouse neuromuscular junctions. J. Neurocytol. 22, 517–530 (1993).

    CAS  PubMed  Google Scholar 

  18. Hill, R. R. & Robbins, N. Mode of enlargement of young mouse neuromuscular junctions observed repeatedly in vivo with visualization of pre- and postsynaptic borders. J. Neurocytol. 201, 83–94 (1991).

    Google Scholar 

  19. Wigston, D. J. Remodeling of neuromuscular junctions in adult mouse soleus. J. Neurosci. 9, 639–647 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Balice-Gordon, R. J. In vivo approaches to neuromuscular structure and function. Methods. Cell Biol. 52, 323–348 (1997).

    CAS  PubMed  Google Scholar 

  21. Ravdin, P. & Axelrod, D. Fluorescent tetramethyl rhodamine derivatives of alpha-bungarotoxin: preparation, separation, and characterization. Anal. Biochem. 80, 585–592 (1977).

    CAS  PubMed  Google Scholar 

  22. Ko, C. P. A lectin, peanut agglutinin, as a probe for the extracellular matrix in living neuromuscular junctions. J. Neurocytol. 16, 567–576 (1987).

    CAS  PubMed  Google Scholar 

  23. O'Malley, J. P., Waran, M. T. & Balice-Gordon, R, J. In vivo observations of terminal Schwann cells at normal, denervated, and reinnervated mouse neuromuscular junctions. J. Neurobiol. 38, 270–286 (1999).

    CAS  PubMed  Google Scholar 

  24. Balice-Gordon, R. J. & Lichtman, J.W. In vivo visualization of the growth of pre- and postsynaptic elements of neuromuscular junctions in the mouse. J. Neurosci. 10, 894–908 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Rich, M.M. & Lichtman, J.W. In vivo visualization of pre- and postsynaptic changes during synapse elimination in reinnervated mouse muscle. J. Neurosci. 9, 1781–1805 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen, L. & Ko, C. P. Extension of synaptic extracellular matrix during nerve terminal sprouting in living frog neuromuscular junctions. J. Neurosci. 14, 796–808 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Balice-Gordon, R. J. & Lichtman, J. W. Long-term synapse loss induced by focal blockade of postsynaptic receptors. Nature 372, 519–524 (1994).

    CAS  PubMed  Google Scholar 

  28. de Paiva, A., Meunier, F. A., Molgo, J., Aoki, K. R. & Dolly, J.O. Functional repair of motor endplates after botulinum neurotoxin type A poisoning: biphasic switch of synaptic activity between nerve sprouts and their parent terminals. Proc. Natl Acad. Sci. USA 96, 3200–3205 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Nguyen, Q. T., Son, Y. J., Sanes, J. R. & Lichtman, J. W. Nerve terminals form but fail to mature when postsynaptic differentiation is blocked: in vivo analysis using mammalian nerve–muscle chimeras. J. Neurosci. 20, 6077–6786 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Rich, M. M., Colman, H. & Lichtman, J. W. In vivo imaging shows loss of synaptic sites from neuromuscular junctions in a model of myasthenia gravis. Neurology 44, 2138–2145 (1994).

    CAS  PubMed  Google Scholar 

  31. Bronner-Fraser, M. Analysis of the early stages of trunk neural crest migration in avian embryos using monoclonal antibody HNK-1. Dev. Biol. 115, 44–55 (1986).

    CAS  PubMed  Google Scholar 

  32. Le Douarin, N. M. & Kalcheim, C. The Neural Crest 2nd edn. (Cambridge Univ. Press, Cambridge, UK, 1999).

    Google Scholar 

  33. Bronner-Fraser, M. & Fraser, S. E. Cell lineage analysis reveals multipotency of some avian neural crest cells. Nature 335, 161–164 (1988).

    CAS  PubMed  Google Scholar 

  34. Serbedzija, G., Bronner-Fraser, M. & Fraser, S. E. A vital dye analysis of the timing and pathways of avian neural crest migration. Development 106, 806–816 (1989).

    Google Scholar 

  35. Frank, E. & Sanes, J. R. Lineage of neurons and glia in chick dorsal root ganglia: analysis in vivo with a recombinant retrovirus. Development 111, 895–908 (1991).

    CAS  PubMed  Google Scholar 

  36. Kulesa, P. & Fraser, S. E. In ovo time-lapse analysis of chick hindbrain neural crest cell migration shows cell interactions during migration to the branchial arches. Development 127, 1161–1172 (2000).

    CAS  PubMed  Google Scholar 

  37. Gan, W. B., Grutzendler, J., Wong, W. T., Wong, R. O. & Lichtman, J. W. Multicolor “DiOlistic” labeling of the nervous system using lipophilic dye combinations. Neuron 27, 219–225 (2000).

    CAS  PubMed  Google Scholar 

  38. Grinvald, A., Lieke, E., Frostig, R. D., Gilbert, C.D. & Wiesel, T. N. Functional architecture of cortex revealed by optical imaging of intrinsic signals. Nature 324, 361–364 (1986).

    CAS  PubMed  Google Scholar 

  39. Bonhoeffer, T. & Grinvald, A. in Brain Mapping: The Methods (eds. Toga, A. W. & Mazziotta, J. C.) 55–97 (Academic, San Diego, 1996).

    Google Scholar 

  40. Shtoyerman, E., Arieli, A., Slovin, H., Vanzetta, I. & Grinvald, A. Long-term optical imaging and spectroscopy reveal mechanisms underlying the intrinsic signal and stability of cortical maps in V1 of behaving monkeys. J. Neurosci. 20, 8111–8121 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Rubin, B. D. & Katz, L. C. Optical imaging of odorant representations in the mammalian olfactory bulb. Neuron 23, 499–511 (1999).

    CAS  PubMed  Google Scholar 

  42. Meister, M. & Bonhoeffer, T. Tuning and topography in an odor map on the rat olfactory bulb. J. Neurosci. 21, 1351–1360 (2000).

    Google Scholar 

  43. Shoham, D. & Grinvald, A. The cortical representation of the hand in macaque and human area s-i: high resolution optical imaging. J. Neurosci. 21, 6820–6835 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. White, L. E., Coppola, D.M. & Fitzpatrick, D. The contribution of sensory experience to the maturation of orientation selectivity in ferret visual cortex. Nature 411, 1049–1052 (2001).

    CAS  PubMed  Google Scholar 

  45. Badea, T., Goldberg, J., Mao, B. & Yuste, R. Calcium imaging of epileptiform events with single-cell resolution. J. Neurobiol. 48, 215–227 (2001).

    CAS  PubMed  Google Scholar 

  46. Schwartz, T. H. & Bonhoeffer, T. In vivo optical mapping of epileptic foci and surround inhibition in ferret cerebral cortex. Nat. Med. 7, 1063–1067 (2001).

    CAS  PubMed  Google Scholar 

  47. Peterlin, Z. A., Kozloski, J., Mao, B. Q., Tsiola, A. & Yuste, R. Optical probing of neuronal circuits with calcium indicators. Proc. Natl. Acad. Sci. USA 97, 3619–3624 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Kozloski, J., Hamzei-Sichani, F. & Yuste, R. Stereotyped position of local synaptic targets in neocortex. Science 293, 868–872 (2001).

    CAS  PubMed  Google Scholar 

  49. Kerr, R. et al. Optical imaging of calcium transients in neurons and pharyngeal muscle of C. elegans. Neuron 26, 583–594 (2000).

    CAS  PubMed  Google Scholar 

  50. Feng, G. et al. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28, 41–51 (2000).

    CAS  PubMed  Google Scholar 

  51. Keller-Peck, C. R. et al. Asynchronous synapse elimination in neonatal motor units: studies using GFP transgenic mice. Neuron 31, 381–394 (2001).

    CAS  PubMed  Google Scholar 

  52. Gensler, S. et al. Assembly and clustering of acetylcholine receptors containing GFP-tagged ɛ or γ subunits: selective targeting to the neuromuscular junction in vivo. Eur. J. Biochem. 268, 2209–2217 (2001).

    CAS  PubMed  Google Scholar 

  53. Denk, W., Strickler, J. H. & Webb, W. W. Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990).

    CAS  PubMed  Google Scholar 

  54. Svoboda, K., Denk, W., Kleinfeld, D. & Tank, D. W. In vivo dendritic calcium dynamics in neocortical pyramidal neurons. Nature 385, 161–165 (1997).

    CAS  PubMed  Google Scholar 

  55. Helmchen, F., Svoboda, K., Denk, W. & Tank, D. W. In vivo dendritic calcium dynamics in deep-layer cortical pyramidal neurons. Nat. Neurosci. 2, 989–996 (1999).

    CAS  PubMed  Google Scholar 

  56. Chen, B. E. et al. Imaging high-resolution structure of GFP-expressing neurons in neocortex in vivo. Learn. Mem. 7, 433–441 (2000).

    CAS  PubMed  Google Scholar 

  57. Lendvai, B., Stern, E. A., Chen, B. & Svoboda, K. Experience-dependent plasticity of dendritic spines in the developing rat barrel cortex in vivo. Nature 404, 876–881 (2000).

    CAS  PubMed  Google Scholar 

  58. Potter, S. M. Two-photon microscopy for 4D imaging of living neurons. in Imaging Neurons: A Laboratory Manual (eds. Yuste, R., Lanni, F. & Konnerth, A.) 20.1–20.16 (CSHL Press, Cold Spring Harbor, NY (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott E. Fraser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lichtman, J., Fraser, S. The neuronal naturalist: watching neurons in their native habitat. Nat Neurosci 4 (Suppl 11), 1215–1220 (2001). https://doi.org/10.1038/nn754

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn754

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing