Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Disentangling signal from noise in visual contrast discrimination

Abstract

Human ability to detect stimulus changes (ΔC) decreases with increasing reference level (C). Because detection performance reflects the signal-to-noise ratio within the relevant sensory brain module, this behavior can be accounted for in two extreme ways: first, the internal response change ΔR evoked by a constant ΔC decreases with C (that is, the transducer R = f(C) displays a compressive nonlinearity), whereas the internal noise is independent of R; second, ΔR is constant with C but the noise level increases with R. A newly discovered constraint on human decision-making helps solve this century-old problem: in a detection task where multiple changes occur with equal probabilities, observers use a unique response criterion to decide whether a change has occurred. For contrast discrimination, our results supported the first account above: human performance was limited by the contrast transducer nonlinearity and an almost constant noise.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Signal detection theory1 framework and the trial sequence.
Figure 2: Threshold increments versus contrast functions for four observers (different symbols).
Figure 3: Response criteria expressed in Z-scores of false alarms (ZFA) as a function of the sensitivity index, d′.
Figure 4: Criterion (ZFA) ratio and α-ratio as a function of the normalized pedestal-contrast ratio for all possible pairwise combinations of the four baseline contrasts used in the main experiment.

Similar content being viewed by others

References

  1. Green, D. M. & Swets, J. A. Signal Detection Theory (Wiley, New York, 1966).

    Google Scholar 

  2. Fechner, G. T. Elemente der Psychophysik (Breitkopf and Härtel, Leipzig, 1860).

    Google Scholar 

  3. Falmagne, J.-C. Elements of Psychophysical Theory (eds. Broadbent, D. E. et al., Oxford Univ. Press, New York, 1985).

    Google Scholar 

  4. Lamming, D. The Measurement of Sensation (eds. Nicholas, J. M. et al.) (Oxford Univ. Press, Oxford, 1997).

    Book  Google Scholar 

  5. Barlow, H. B. Increment thresholds at low intensities considered as signal/noise discrimination. J. Physiol. (Lond.) 136, 469–488 (1957).

    Article  CAS  Google Scholar 

  6. Barlow, H. B. in Vertebrate Photoreception (eds. Barlow, H. B. & Fatt, P.) (Academic, New York, 1977).

    Google Scholar 

  7. Foley, J. M. Human luminance pattern-vision mechanisms: masking experiments require a new model. J. Opt. Soc. Am. A 11, 1710–1719 (1994).

    Article  CAS  Google Scholar 

  8. Itti, L., Koch, C. & Braun, J. Revisiting spatial vision: toward a unifying model. J. Opt. Soc. Am. A 17, 1899–1917 (2000).

    Article  CAS  Google Scholar 

  9. Kontsevich, L. & Tyler, C. Measuring the separate internal response nonlinearities of signal and noise. Vision Res. (in press).

  10. Nachmias, J. & Sansbury, R. V. Grating contrast: discrimination may be better than detection. Vision Res. 14, 1039–1042 (1974).

    Article  CAS  Google Scholar 

  11. Stevens, S. S. On the psychophysical law. Psychol. Rev. 64, 153–181 (1957).

    Article  CAS  Google Scholar 

  12. Wilson, H. R. A transducer function for threshold and suprathreshold human vision. Biol. Cybern. 38, 171–178 (1980).

    Article  CAS  Google Scholar 

  13. Gorea, A. & Sagi, D. Failure to handle more than one internal representation in visual detection tasks. Proc. Natl. Acad. Sci. USA 97, 12380–12384 (2000).

    Article  CAS  Google Scholar 

  14. Legge, G. E. & Foley, J. M. Contrast masking in human vision. J. Opt. Soc. Am. 70, 1458–1471 (1980).

    Article  CAS  Google Scholar 

  15. Legge, G. E. A power law for contrast discrimination. Vision Res. 21, 457–467 (1981).

    Article  CAS  Google Scholar 

  16. Sagi, D. & Hochstein, S. Discriminability of suprathreshold compound spatial frequency gratings. Vision Res. 23, 1595–1606 (1983).

    Article  CAS  Google Scholar 

  17. Eskew, J., Rhea, T., Stromeyer C. F. III, Picotte, C. J. & Kronauer, R. E. Detection uncertainty and the facilitation of chromatic detection by luminance contours. J. Opt. Soc. Am. A 8, 394–403 (1991).

    Article  Google Scholar 

  18. Nachmias, J. & Kocher, E. C. Visual detection and discrimination of luminance increments. J. Opt. Soc. Am. 60, 382–389 (1970).

    Article  CAS  Google Scholar 

  19. Lu, Z.-L. & Dosher, B. A. Characterizing human inefficiencies with equivalent internal noise. J. Opt. Soc. Am. A 16, 764–778 (1999).

    Article  CAS  Google Scholar 

  20. Lu, Z. & Dosher, B. A. External noise distinguishes attention mechanisms. Vision Res. 38, 1183–1198 (1998).

    Article  CAS  Google Scholar 

  21. Legge, G. E., Kersten, D. & Burgess, A. E. Contrast discrimination in noise. J. Opt. Soc. Am. A 4, 391–404 (1987).

    Article  CAS  Google Scholar 

  22. Tolhurst, D. J., Movshon, J. A. & Dean, A. F. The statistical reliability of signals in single neurons in cat and monkey visual cortex. Vision Res. 23, 775–785 (1983).

    Article  CAS  Google Scholar 

  23. Geisler, W. S. & Albrecht, D. G. Visual cortex neurons in monkeys and cats: detection, discrimination, and identification. Vis. Neurosci. 14, 897–919 (1997).

    Article  CAS  Google Scholar 

  24. Softky, W. R. & Koch, C. The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs. J. Neurosci. 13, 334–350 (1993).

    Article  CAS  Google Scholar 

  25. Barlow, H. B., Kaushal, T. P., Hawken, M. & Parker, A. J. Human contrast discrimination and the threshold of cortical neurons. J. Opt. Soc. Am. A 4, 2366–2371 (1987).

    Article  CAS  Google Scholar 

  26. Shadlen, M. N. & Newsome, W. T. The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. J. Neurosci. 18, 3870–3896 (1998).

    Article  CAS  Google Scholar 

  27. Teich, M. C., Heneghan, C., Lowen, S. B., Ozaki, T. & Kaplan, E. Fractal character of the neural spike train in the visual system of the cat. J. Opt. Soc. Am. A 14, 529–546 (1997).

    Article  CAS  Google Scholar 

  28. Barlow, H. B. Retinal noise and absolute threshold. J. Opt. Soc. Am. 46, 634–639 (1956).

    Article  CAS  Google Scholar 

  29. Ahumada, J. A. J. & Watson, A. B. Equivalent-noise model for contrast detection and discrimination. J. Opt. Soc. Am. A 2, 1133–1139 (1985).

    Article  Google Scholar 

  30. Pelli, D. G. in Psychology (Cambridge, Cambridge, UK, 1981).

    Google Scholar 

  31. Pelli, D. G. in Vision: Coding and Efficiency (ed. Blakemore, C.) 3–24 (Cambridge Univ. Press, New York, 1990).

    Google Scholar 

  32. Rose, A. The relative sensitivities of television pickup tubes, photographic film, and the human eye. Proc. IRE 30, 293–300 (1942).

    Article  Google Scholar 

  33. Rose, A. The sensitivity performance of the human eye on an absolute scale. J. Opt. Soc. Am. 38, 196–208 (1948).

    Article  CAS  Google Scholar 

  34. de Vries, H. L. The quantum character of light and its bearing upon threshold of vision, the differential sensitivity and visual acuity of the eye. Physica 10, 553–564 (1943).

    Article  Google Scholar 

  35. Krauskopf, J. & Reeves, A. Measurement of the effect of photon noise on detection. Vision Res. 20, 193–196 (1980).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Ahissar, H. Barlow, D. Foster, C. Lorenzi, Z.-L. Lu, M. Morgan, A. Reeves, J. Solomon, J. Thomas and C. Tyler for their comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei Gorea.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gorea, A., Sagi, D. Disentangling signal from noise in visual contrast discrimination. Nat Neurosci 4, 1146–1150 (2001). https://doi.org/10.1038/nn741

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn741

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing