Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Temporal and rate representations of time-varying signals in the auditory cortex of awake primates

Abstract

Because auditory cortical neurons have limited stimulus-synchronized responses, cortical representations of more rapidly occurring but still perceivable stimuli remain unclear. Here we show that there are two largely distinct populations of neurons in the auditory cortex of awake primates: one with stimulus-synchronized discharges that, with a temporal code, explicitly represented slowly occurring sound sequences and the other with non-stimulus-synchronized discharges that, with a rate code, implicitly represented rapidly occurring events. Furthermore, neurons of both populations displayed selectivity in their discharge rates to temporal features within a short time-window. Our results suggest that the combination of temporal and rate codes in the auditory cortex provides a possible neural basis for the wide perceptual range of temporal information.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stimulus-synchronized responses to repetitive acoustic events.
Figure 2: Non-synchronized rate responses to click trains.
Figure 3: Population responses to click trains.
Figure 4: Neural selectivity to temporal asymmetry.

Similar content being viewed by others

References

  1. Rosen, S. Temporal information in speech: acoustic, auditory and linguistic aspects. Phil. Trans. R. Soc. Lond. B Biol. Sci. 336, 367–373 (1992).

    Article  CAS  Google Scholar 

  2. Margoliash, D. Acoustic parameters underlying the responses of song-specific neurons in the white-crowned sparrow. J. Neurosci. 3, 1039–1057 (1983).

    Article  CAS  Google Scholar 

  3. Doupe, A. J. & Konishi, M. Song-selective auditory circuits in the vocal control system of the zebra finch. Proc. Natl. Acad. Sci. USA 88, 11339–11343 (1991).

    Article  CAS  Google Scholar 

  4. Wang, X., Merzenich, M. M., Beitel, R. & Schreiner, C. E. Representation of a species-specific vocalization in the primary auditory cortex of the common marmoset: temporal and spectral characteristics. J. Neurophysiol. 74, 2685–2706 (1995).

    Article  CAS  Google Scholar 

  5. Esser, K.-H., Condon, C. J., Suga, N. & Kanwal, J. S. Syntax processing by auditory cortical neurons in the FM-FM area of the mustached bat Pteronotus parnellii. Proc. Natl. Acad. Sci. USA 94, 14019–14024 (1997).

    Article  CAS  Google Scholar 

  6. Whitfield, I. C. Auditory cortex and the pitch of complex tones. J. Acoust. Soc. Am. 67, 644–647 (1980).

    Article  CAS  Google Scholar 

  7. Heffner, H. E. & Heffner, R. S. Effect of unilateral and bilateral auditory cortex lesions on the discrimination of vocalizations by Japanese macaques. J. Neurophysiol. 56, 683–701 (1986).

    Article  CAS  Google Scholar 

  8. Zatorre, R. J. Pitch perception of complex tones and human temporal-lobe function. J. Acoust. Soc. Am. 84, 566–572 (1988).

    Article  CAS  Google Scholar 

  9. Heil, P. Auditory cortical onset responses revisited. I. First-spike timing. J. Neurophysiol. 77, 2616–2641 (1997).

    Article  CAS  Google Scholar 

  10. de Ribaupierre, F., Goldstein, M. H. Jr. & Yeni-Komshian, G. Cortical coding of repetitive acoustic pulses. Brain Res. 48, 205–225 (1972).

    Article  CAS  Google Scholar 

  11. Eggermont, J. J. Rate and synchronization measures of periodicity coding in cat primary auditory cortex. Hear. Res. 56, 153–167 (1991).

    Article  CAS  Google Scholar 

  12. Cheung, S. W. et al. Auditory cortical neuron response differences under isoflurane versus pentobarbital anesthesia. Hear Res. 156, 115–127 (2001).

    Article  CAS  Google Scholar 

  13. Creutzfeldt, O., Hellweg, F.-C. & Schreiner, C. Thalamocortical transformation of responses to complex auditory stimuli. Exp. Brain Res. 39, 87–104 (1980).

    Article  CAS  Google Scholar 

  14. Phillips, D. P., Hall, S. E. & Hollett, J. L. Repetition rate and signal level effects on neuronal responses to brief tone pulses in cat auditory cortex. J. Acoust. Soc. Am. 85, 2537–2549 (1989).

    Article  CAS  Google Scholar 

  15. Gaese, B. H. & Ostwald, J. Temporal coding of amplitude and frequency modulation in the rat auditory cortex. Eur. J. Neurosci. 7, 438–450 (1995).

    Article  CAS  Google Scholar 

  16. Bieser, A. & Müller-Preuss, P. Auditory responsive cortex in the squirrel monkey: neural responses to amplitude-modulated sounds. Exp. Brain. Res. 108, 273–284 (1996).

    Article  CAS  Google Scholar 

  17. Steinschneider, M., Reser, D. H., Fishman, Y. I., Schroeder, C. E. & Arezzo, J. C. Click train encoding in primary auditory cortex of the awake monkey: evidence for two mechanisms subserving pitch perception. J. Acoust. Soc. Am. 104, 2935–2955 (1998).

    Article  CAS  Google Scholar 

  18. Lu, T. & Wang, X. Temporal discharge patterns evoked by rapid sequences of wide- and narrowband clicks in the primary auditory cortex of cat. J. Neurophysiol. 84, 236–246 (2000).

    Article  CAS  Google Scholar 

  19. Johnson, D. H. The relationship between spike rate and synchrony in responses of auditory-nerve fibers to single tones. J. Acoust. Soc. Am. 68, 1115–1122 (1980).

    Article  CAS  Google Scholar 

  20. Joris, P. X. & Yin, T. C. T. Responses to amplitude-modulated tones in the auditory nerve of the cat. J. Acoust. Soc. Am. 91, 215–232 (1992).

    Article  CAS  Google Scholar 

  21. Kilgard, M. P. & Merzenich, M. M. Plasticity of temporal information processing in the primary auditory cortex. Nat. Neurosci. 1, 727–731 (1998).

    Article  CAS  Google Scholar 

  22. Plomp, R. Rate of decay of auditory sensation. J. Acoust. Soc. Am. 36, 277–282 (1964).

    Article  Google Scholar 

  23. Ronken, D. A. Monaural detection of a phase difference between clicks. J. Acoust. Soc. Am. 47, 1091–1099 (1970).

    Article  CAS  Google Scholar 

  24. Goldstein, M. H. Jr., Kiang, N. Y.-S. & Brown, R. M. Response of the auditory cortex to repetitive acoustic stimuli. J. Acoust. Soc. Am. 31, 356–364 (1959).

    Article  Google Scholar 

  25. Wang, X. On cortical coding of vocal communication sounds in primates. Proc. Natl. Acad. Sci. USA 97, 11843–11849 (2000).

    Article  CAS  Google Scholar 

  26. Mardia, K. V. & Jupp, P. E. Directional statistics (John Wiley and Sons, New York, 2000).

    Google Scholar 

  27. Patterson, R. D. The sound of a sinusoid: spectral models. J. Acoust. Soc. Am. 96, 1409–1418 (1994).

    Article  Google Scholar 

  28. Fay, R. R., Chronopoulos, M. & Patterson, R. D. The sound of a sinusoid: perception and neural representations in the goldfish (carassius auratus). Audit. Neurosci. 2, 377–392 (1996).

    Google Scholar 

  29. Lu, T., Liang, L. & Wang, X. Neural representations of temporally asymmetric stimuli in the auditory cortex of awake primates. J. Neurophysiol. 85, 2364–2380 (2001).

    Article  CAS  Google Scholar 

  30. Langner, G. Periodicity coding in the auditory system. Hear. Res. 60, 115–142 (1992).

    Article  CAS  Google Scholar 

  31. Shadlen, M. N. & Newsome, W. T. Noise, neural codes and cortical organization. Curr. Opin. Neurobiol. 4, 569–579 (1994).

    Article  CAS  Google Scholar 

  32. Ahissar, E., Sosnik, R. & Haidarliu, S. Transformation from temporal to rate coding in a somatosensory thalamocortical pathway. Nature 406, 302–306 (2000).

    Article  CAS  Google Scholar 

  33. Fitzpatrick, D. C., Kuwada, S., Kim, D. O., Parham, K. & Batra, R. Responses of neurons to click-pairs as simulated echoes: auditory nerve to auditory cortex. J. Acoust. Soc. Am. 106, 3460–3472 (1999).

    Article  CAS  Google Scholar 

  34. Wang, X. & Sachs, M. B. Transformation of temporal discharge patterns in a ventral cochlear nucleus stellate cell model: implications for physiological mechanisms. J. Neurophysiol. 73, 1600–1616 (1995).

    Article  CAS  Google Scholar 

  35. Schulze, H. & Langner, G. Periodicity coding in the primary auditory cortex of the Mongolian gerbil (meriones unguiculatus): two different coding strategies for pitch and rhythm? J. Comp. Physiol. A 181, 651–663 (1997).

    Article  CAS  Google Scholar 

  36. Miller, G. A. & Taylor, W. G. The perception of repeated bursts of noise. J. Acoust. Soc. Am. 20, 171–182 (1948).

    Article  Google Scholar 

  37. Hirsh, I. J. Auditory perception of temporal order. J. Acoust. Soc. Am. 31, 759–767 (1959).

    Article  Google Scholar 

  38. Joliot, M., Ribary, U. & Llinas, R. Human oscillatory brain activity near 40 Hz coexists with cognitive temporal binding. Proc. Natl. Acad. Sci. USA 91, 11748–11751 (1994).

    Article  CAS  Google Scholar 

  39. Brown, C. H. & Maloney, C. G. Temporal integration in two species of old world monkeys: blue monkeys (cercopithecus mitis) and grey-cheeked mangabeys (cercocebus albigena). J. Acoust. Soc. Am. 79, 1058–1064, 4 (1986).

    Article  CAS  Google Scholar 

  40. Moody, D. B. Detection and discrimination of amplitude-modulated signals by macaque monkeys. J. Acoust. Soc. Am. 95, 3499–3510 (1994).

    Article  CAS  Google Scholar 

  41. Resnick, S. B. & Feth, L. L. Discriminability of time-reversed click pairs: intensity effects. J. Acoust. Soc. Am. 57, 1493–1499 (1975).

    Article  CAS  Google Scholar 

  42. Green, D. M. Temporal acuity as a function of frequency. J. Acoust. Soc. Am. 54, 373–379 (1973).

    Article  CAS  Google Scholar 

  43. Patterson, R. D. The sound of a sinusoid: time-interval models. J. Acoust. Soc. Am. 96, 1419–1428 (1994).

    Article  Google Scholar 

  44. Akeroyd, M. A. & Patterson, R. D. A comparison of detection and discrimination of temporal asymmetry in amplitude modulation. J. Acoust. Soc. Am. 101, 430–439 (1997).

    Article  CAS  Google Scholar 

  45. Flanagan, J. L. & Guttman, N. On the pitch of periodic pulses. J. Acoust. Soc. Am. 32, 1308–1319 (1960).

    Article  Google Scholar 

  46. Schouten, J. F., Ritsma, R. J. & Cardozo, B. L. Pitch of the residue. J. Acoust. Soc. Am. 34, 1418–1424 (1962).

    Article  Google Scholar 

  47. Krumbholz, K., Patterson, R. D. & Pressnitzer, D. The lower limit of pitch as determined by rate discrimination. J. Acoust. Soc. Am. 108, 1170–1180 (2000).

    Article  CAS  Google Scholar 

  48. Aitkin, L. M., Merzenich, M. M., Irvine, D. R., Clarey, J. C. & Nelson, J. E. Frequency representation in auditory cortex of the common marmoset (callithrix jacchus jacchus). J. Comp. Neurol. 252, 175–185 (1986).

    Article  CAS  Google Scholar 

  49. Aitkin, L. & Park, V. Audition and the auditory pathway of a vocal new world primate, the common marmoset. Prog. Neurobiol. 41, 345–367 (1993).

    Article  CAS  Google Scholar 

  50. Rauschecker, J. P., Tian, B. & Hauser, M. Processing of complex sounds in the macaque nonprimary auditory cortex. Science 268, 111–114 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank E. Bartlett and S. Kadia for helpful comments on the manuscript and A. Pistorio for assistance with animal training. This work was supported by NIH Grant DC03180 and by a Presidential Early Career Award for Scientists and Engineers (X. Wang).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoqin Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, T., Liang, L. & Wang, X. Temporal and rate representations of time-varying signals in the auditory cortex of awake primates. Nat Neurosci 4, 1131–1138 (2001). https://doi.org/10.1038/nn737

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn737

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing