Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Lateral interactions between targets and flankers in low-level vision depend on attention to the flankers

Abstract

Detection of an oriented visual target can be facilitated by collinear visual flankers. Such lateral interactions are thought to reflect integrative processes in low-level vision. In past studies, the flankers were task-irrelevant, and were typically assumed to be unattended. Here we manipulated attention to the flankers directly, by requiring observers to judge the relative alignment of two flankers while ignoring a second flanker-pair. Under identical stimulus conditions, attended flankers produced typical lateral interactions, but ignored flankers did not. These data show that lateral interactions can depend on attention to the flanking context, revealing the functional consequences of attentional modulation in low-level vision.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dual-task two-interval forced-choice trial sequence, with example dual-axis stimuli.
Figure 2: Example of phase-shifted stimuli, plus staircased contrast-threshold estimates for central target detection in the dual-task conditions of experiment 1.
Figure 3: Example stimuli with no phase shifting, plus central target detection contrast threshold estimates, for experiments 2 and 3.

References

  1. Yantis, S. in Control of Cognitive Processes: Attention and Performance XVIII (eds. Monsell, S. & Driver, J.) 73–103 (MIT Press, Cambridge, Massachusetts, 2000).

    Google Scholar 

  2. Driver, J. & Baylis, G. C. in The Attentive Brain (ed. Parasuraman, R.) 299–325 (MIT Press, Cambridge, Massachusetts, 1998).

    Google Scholar 

  3. Posner, M. L. & Gilbert, C. D. Attention and primary visual cortex. Proc. Natl. Acad. Sci. USA 96, 2585–2587 (1999).

    Article  CAS  Google Scholar 

  4. Gandhi, S. P., Heeger, D. J. & Boynton, G. M. Spatial attention affects brain activity in human primary visual cortex. Proc. Natl. Acad. Sci. USA 96, 3314–3319 (1999).

    Article  CAS  Google Scholar 

  5. Polat, U. & Sagi, D. Lateral interactions between spatial channels: suppression and facilitation revealed by lateral masking experiments. Vision Res. 33, 993–999 (1993).

    Article  CAS  Google Scholar 

  6. Polat, U. & Sagi, D. The architecture of perceptual spatial interactions. Vision Res. 34, 73–78 (1994).

    Article  CAS  Google Scholar 

  7. Zenger, B. & Sagi, D. Isolating excitatory and inhibitory nonlinear spatial interactions involved in contrast detection. Vision Res. 36, 2497–2513 (1996).

    Article  CAS  Google Scholar 

  8. Polat, U. Functional architecture of long-range perceptual interactions. Spat. Vis. 12, 143–162 (1999).

    Article  CAS  Google Scholar 

  9. Gilbert, C. D. & Wiesel, T. N. Columnar specificity of intrinsic horizontal and corticocortical connections in cat visual cortex. J. Neurosci. 9, 2432–2442 (1989).

    Article  CAS  Google Scholar 

  10. Polat, U., Mizobe, K., Pettet, M., Kasamatsu, T. & Norcia, T. Collinear stimuli regulate visual responses depending on cell's contrast threshold. Nature 391, 580–584 (1998).

    Article  CAS  Google Scholar 

  11. Lavie, N. Perceptual load as a necessary condition for selective attention. J. Exp. Psychol. Hum. Percept. Perform. 21, 451–468 (1995).

    Article  CAS  Google Scholar 

  12. Lee, D. K., Itti, L., Koch, C. & Braun, J. Attention activates winner-takes-all competion among visual filters. Nat. Neurosci. 2, 375–381 (1999).

    Article  CAS  Google Scholar 

  13. Morgan, M. J. & Dresp, B. Contrast detection facilitation by spatially separated targets and inducers. Vision Res. 35, 1019–1024 (1995).

    Article  CAS  Google Scholar 

  14. Ito, M. & Gilbert, C. D. Attention modulates contextual influences in the primary visual cortex of alert monkeys. Neuron 22, 593–604 (1999).

    Article  CAS  Google Scholar 

  15. Gilbert, C., Ito, M., Kapadia, M. & Westheimer, G. Interactions between attention, context and learning in primary visual cortex. Vision Res. 40, 1217–1226 (2000).

    Article  CAS  Google Scholar 

  16. Morgan, M. J., Ward, R. M. & Castet, E. Visual search for a tilted target: tests of spatial uncertainty models. Q. J. Exp. Psychol. A 51, 347–370 (1998).

    Article  CAS  Google Scholar 

  17. Ito, M., Westheimer, G. & Gilbert, C. D. Attention and perceptual learning modulate contextual influences on visual perception. Neuron 20, 1191–1197 (1998).

    Article  CAS  Google Scholar 

  18. Carrasco, M., Penpeci-Talgar, C. & Eckstein, M. Spatial covert attention increases contrast sensitivity across the CSF: support for signal enhancement. Vision Res. 40, 1203–1216 (2000).

    Article  CAS  Google Scholar 

  19. Joseph, J. S., Chun, M. M. & Nakayama, K. Attention requirements in a 'preattentive' feature search task. Nature 387, 805–807 (1997).

    Article  CAS  Google Scholar 

  20. Ben-Av, M., Sagi, D. & Braun, J. Visual attention and perceptual grouping. Percept. Psychophys. 52, 277–294 (1992).

    Article  CAS  Google Scholar 

  21. Zenger, B., Braun, J. & Koch, C. Attentional effects on contrast detection in the presence of salient distractors. Vision Res. (2000).

  22. Polat, U. & Sagi, D. Spatial interactions in human vision: from near to far via experience-dependent cascades of connections. Proc. Natl. Acad. Sci. USA 91, 1206–1209 (1994).

    Article  CAS  Google Scholar 

  23. Ishai, A. & Sagi, D. Common mechanisms of visual imagery and perception. Science 268, 1772–1774 (1995).

    Article  CAS  Google Scholar 

  24. Tanaka, Y. & Sagi, D. Long-lasting, long-range detection facilitation. Vision Res. 38, 2591–2599 (1998).

    Article  CAS  Google Scholar 

  25. Moran, J. & Desimone, R. Selective attention gates visual processing in the extrastriate cortex. Science 229, 782–784 (1985).

    Article  CAS  Google Scholar 

  26. Treue, S. & Maunsell, J. Attentional modulation of visual motion processing in cortical areas MT and MST. Nature 382, 539–541 (1996).

    Article  CAS  Google Scholar 

  27. Recanzone, G. & Wurtz, R. Effects of attention on MT and MST neuronal activity during pursuit initiation. J. Neurophysiol. 83, 777–790 (2001).

    Article  Google Scholar 

  28. Reynolds, J. H., Chelazzi, L. & Desimone, R. Competitive mechanisms subserve attention in macaque areas V2 and V4. J. Neurosci. 19, 1736–1753 (1999).

    Article  CAS  Google Scholar 

  29. Li, Z. Visual segmentation by contextual influences via intra-cortical interactions in the primary visual cortex. Network Comput. Neural Syst. 10, 187–212 (1999).

    Article  CAS  Google Scholar 

  30. Gilbert, C. D. & Wiesel, T. N. The influence of contextual stimuli on the orientation selectivity of cells in primary visual cortex of the cat. Vision Res. 30, 1689–1701 (1990).

    Article  CAS  Google Scholar 

  31. Reynolds, J. H., Pasternak, T. & Desimone, R. Attention increases sensitivity of V4 neurons. Neuron 26, 703–714 (2000).

    Article  CAS  Google Scholar 

  32. Sagi, D. in Brain Theory: Biological Basis and Computational Theory of Vision (eds. Aertsen, A. & Braitenberg, V., Elsevier Science, Amsterdam, 1996).

    Google Scholar 

  33. Lamme, V. A. F. & Roelfsema, P. R. The distinct modes of vision offered by feedforward and recurrent processing. Trends. Neurosci. 23, 571–579 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by a project grant (31/S13736) from the Biotechnology and Biological Sciences Research Council (UK) to J.D. and E.F., and by a travel grant from the Royal Society (UK) to E.F. We thank J. Braun, M. Herzog, Z. Li, M. Morgan, M. Posner, R. Perry, G. Rees, T. Shallice, T. Troscianko, J. Wolfe and S. Yantis for comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elliot Freeman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freeman, E., Sagi, D. & Driver, J. Lateral interactions between targets and flankers in low-level vision depend on attention to the flankers. Nat Neurosci 4, 1032–1036 (2001). https://doi.org/10.1038/nn728

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn728

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing