Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Changing objects lead briefly flashed ones

Abstract

Continuous, predictable events and spontaneous events may coincide in the visual environment. For a continuously moving object, the brain compensates for delays in transmission between a retinal event and neural responses in higher visual areas. Here we show that it similarly compensated for other smoothly changing features. A disk was flashed briefly during the presentation of another disk of continuously changing color, and observers compared the colors of the disks at the moment of flash. We also tested luminance, spatial frequency and pattern entropy; for all features, the continuously changing item led the flashed item in feature space. Thus the visual system's ability to compensate for delays in information about a continuously changing stimulus may extend to all features. We propose a model based on backward masking and priming to explain the phenomenon.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The flashed object lags behind in color space.
Figure 2: A flashed object in luminance, spatial-frequency or pattern-entropy space perceptually trails a continuously present and smoothly changing one.
Figure 3: Attentional switching effects cannot account for the flash-lag phenomenon.
Figure 4: Color aftereffect (adaptation) cannot explain the color flash-lag effect.
Figure 5: Reducing the intensity of the flash or its duration did not enhance the flash-lag effect.

Similar content being viewed by others

References

  1. Nijhawan, R. Motion extrapolation in catching. Nature 370, 256–257 (1994).

    Article  CAS  Google Scholar 

  2. Nijhawan, R. Visual decomposition of colour through motion extrapolation Nature 386, 66–69 (1997).

    Article  CAS  Google Scholar 

  3. Berry, M. J., Brivanlou, I. H., Jordan, T. A. & Meister, M. Anticipation of moving stimuli by the retina. Nature 398, 334–338 (1999).

    Article  CAS  Google Scholar 

  4. Cavanagh, P. Predicting the present. Nature 386, 19–20 (1997).

    Article  CAS  Google Scholar 

  5. Zeki, S. The representation of colour in the cerebral cortex. Nature 284, 412–418 (1980).

    Article  CAS  Google Scholar 

  6. Hartline, H. K. The response of single optic nerve fibers of the vertebrate eye to illumination of the retina. Am. J. Psychol. 57, 243–249 (1938).

    Google Scholar 

  7. Kuffler, S. W. Discharge patterns and functional organization of mammalian retina J. Neurophysiol. 16, 37–68 (1953).

    Article  CAS  Google Scholar 

  8. Hubel, D. H. & Wiesel, T. N. Integrative action in the cat's lateral geniculate body. J. Physiol. (Lond.) 155, 385–398 (1961).

    Article  CAS  Google Scholar 

  9. Campbell, F. W., Cooper, G. F. & Enroth-Cugell, C. The spatial selectivity of the visual cells of the cat. J. Physiol. (Lond.) 203, 223–235 (1969).

    Article  CAS  Google Scholar 

  10. Schiller, P. H., Finlay, B. L. & Volman, S. F. Quantitative studies of single-cell properties in monkey striate cortex. III. Spatial frequency. J. Neurophysiol. 39, 1334–1351 (1976).

    Article  CAS  Google Scholar 

  11. Schiller, P. H., Finlay, B. L. & Volman, S. F. Quantitative studies of single-cell properties in monkey striate cortex. I. Spatiotemporal organization of receptive fields. J. Neurophysiol. 39, 1288–1319 (1976).

    Article  CAS  Google Scholar 

  12. Albright, T. Direction and orientation selectivity of neurons in visual area MT of the macaque. J. Neurophysiol. 52, 1106–1130 (1984).

    Article  CAS  Google Scholar 

  13. Hammond, P. & MacKay, D. M. Differential responses of cat visual cortical cells to textured stimuli. Exp. Brain Res. 22, 427–430 (1975).

    Article  Google Scholar 

  14. Jonides, J. & Yantis, S. Uniqueness of abrupt visual onset in capturing attention. Percept. Psychophys. 437, 346–354 (1988).

    Article  Google Scholar 

  15. Baldo, M. V. C. & Klein, S. A. Extrapolation or attention shift? Nature 378, 565–566 (1995).

    Article  CAS  Google Scholar 

  16. Khurana, B. & Nijhawan, R. Extrapolation or attention shift? Nature 378, 565–566 (1995).

    Article  Google Scholar 

  17. von Helmholtz, H. Handbuch der Physiologischen Optik II 240–245 (Verlag von Leopold Voss: Hamburg und Leipzig, 1909).

    Google Scholar 

  18. Wohlgemuth, A. On the aftereffect of seen movement. Br. J. Psychol. Monogr. Suppl. 1, 1–117 (1911).

    Google Scholar 

  19. Snowden, R. J. Shifts in perceived position following adaptation to visual motion. Curr. Biol. 8, 1343–1345 (1998).

    Article  CAS  Google Scholar 

  20. Nishida, S. & Johnston, A. Influence of motion signals on the perceived position of spatial pattern. Nature 397, 610–612 (1999).

    Article  CAS  Google Scholar 

  21. Suzuki, S. & Cavanagh, P. Focused attention distorts visual space: An attentional repulsion effect. J. Exp. Psychol. Hum. Percept. Perform. 23, 443–463 (1997).

    Article  CAS  Google Scholar 

  22. Blakemore, C. & Sutton, P. Size adaptation: a new aftereffect. Science 166, 245–247 (1969).

    Article  CAS  Google Scholar 

  23. DiLollo, V. Temporal integration in visual memory. J. Exp. Psychol. 109, 75–97 (1980).

    Article  Google Scholar 

  24. Coltheart, M. Iconic memory and visible persistence. Percept. Psychophys. 27, 183–228 (1980).

    Article  CAS  Google Scholar 

  25. DiLollo, V. & Bischof, W. F. Inverse-intensity effect in duration of visible persistence. Psychol. Bull. 118, 223–237 (1995).

    Article  CAS  Google Scholar 

  26. Purushothaman, G., Patel, S. S., Bedell, H. E. & Ogmen, H. Moving ahead through differential visual latency. Nature 396, 424–424 (1998).

    Article  CAS  Google Scholar 

  27. Whitney, D. & Murakami, I. Latency difference, not spatial extrapolation. Nat. Neurosci. 1, 656–657 (1998).

    Article  CAS  Google Scholar 

  28. Eagleman, D. M. & Sejnowski, T. J. Motion integration and postdiction in visual awareness. Science 287, 2036–2038 (2000).

    Article  Google Scholar 

  29. Maunsell, J. H. & Gibson, J. R. Visual response latencies in striate cortex of the macaque monkey. J. Neurophysiol. 68, 1332–1344 (1992).

    Article  CAS  Google Scholar 

  30. Turvey, M. T. On peripheral and central processes in vision. Psychol. Rev. 80, 1–52 (1973).

    Article  CAS  Google Scholar 

  31. Breitmeyer, B. G. Visual Masking: An Integrative Approach (Oxford Univ. Press, New York, 1984).

    Google Scholar 

  32. Bachmann, T. Psychophysiology of Visual Masking (Nova, Commack, New York, 1994).

    Google Scholar 

  33. Bartram, D. J. The role of visual and semantic codes in object naming. Cognit. Psychol. 6, 325–356 (1974).

    Article  Google Scholar 

  34. Marcel, A. J. Conscious and unconscious perceptions: An approach to the relations between phenomenal experience and perceptual processes. Cognit. Psychol. 15, 238–300 (1983).

    Article  CAS  Google Scholar 

  35. Efron, R. Conservation of temporal information by perceptual systems. Percept. Psychophys. 14, 518–530 (1973).

    Article  Google Scholar 

  36. Brainard, D. H. The Psychophysics Toolbox. Spat. Vis. 10, 443–446 (1997).

    Article  Google Scholar 

  37. Pelli, D. G. The Video Toolbox software for visual psychophysics: tranforming numbers into movies. Spat. Vis. 10, 437–442 (1997).

    Article  CAS  Google Scholar 

  38. Boynton, R. M. & Kaiser, P. K. The additivity law made to work for heterochromatic photometry with bipartite fields. Science 161, 366–368 (1968).

    Article  CAS  Google Scholar 

  39. Finney, D. J. Probit Analysis (Cambridge Univ. Press, Cambridge, UK, 1971).

    Google Scholar 

  40. McKee, S. P., Klein, S. A. & Teller, D. Y. Statistical properties of forced-choice psychometric functions: Implications of probit analysis. Percept. Psychophys. 37, 286–298 (1985).

    Article  CAS  Google Scholar 

  41. Foster, D. H. & Bischof, W. F. Thresholds from psychometric functions: Superiority of bootstrap to incremental and probit variance estimators. Psychol. Rev. 109, 152–159 (1991).

    Google Scholar 

Download references

Acknowledgements

This research was supported by NSF grant SBR-9710116 and a Caltech Division of Biology fellowship awarded to B.R.S. We thank Johanna Weber for reviewing our manuscript, Christian Scheier for providing the statistics software, Gabriel Kreiman for help with printing and Chris Tyler for suggestions on improving the pattern-entropy experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhavin R. Sheth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheth, B., Nijhawan, R. & Shimojo, S. Changing objects lead briefly flashed ones. Nat Neurosci 3, 489–495 (2000). https://doi.org/10.1038/74865

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/74865

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing