Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Learning to find a shape

Abstract

We studied the transition of stimuli from novel to familiar in visual search and in the guidance of attention to a particular object. Ability to identify an object improved dramatically over several days of training. The learning was specific for the object's position in the visual field, orientation and configuration. Improvement was initially localized to one or two positions near the fixation spot and then expanded radially to include the full area of the stimulus array. Characteristics of this learning process may reflect a shift in the cortical representation of complex features toward earlier stages in the visual pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Training on triangles of a particular orientation resulted in improvements in detection specific to the object at the trained orientation.
Figure 2: Learning showed visuotopic specificity.
Figure 3: Performance as a function of number of distractors within and outside the training region.
Figure 4: Learning was specific for object configuration and transferred to a new background.

Similar content being viewed by others

References

  1. Treisman, A & Gelade, G. A feature integration theory of attention . Cognit. Psychol. 12, 97– 136 (1980).

    Article  CAS  Google Scholar 

  2. Sagi, D. & Julesz, B. ‘Where’ and ‘what’ in vision. Science 228, 1217– 1219 (1985).

    Article  CAS  Google Scholar 

  3. Duncan, J. & Humphrey, G. W. Visual search and stimulus similarity . Psychol. Rev. 96, 433– 458 (1989).

    Article  CAS  Google Scholar 

  4. Rubinstein, B. S. & Sagi, D. Spatial variability as a limiting factor in texture-discrimination tasks: implications for performance asymmetries. J. Opt. Soc. Am. A 7, 1632– 1643 (1990).

    Article  Google Scholar 

  5. Wang, Q., Cavanagh, P. & Green, M. Familiarity and pop-out in visual search. Percept. Psychophys. 56, 495–500 (1994).

    Article  CAS  Google Scholar 

  6. Maljovic, V. & Nakayama, K. Priming of pop-out detection: role of features. Mem. Cognit. 22, 657– 672 (1994).

    Article  Google Scholar 

  7. Maljovic, V. & Nakayama, K. Priming of pop-out: II. role of position. Percept. Psychophys. 58, 977– 991 (1996).

    Article  Google Scholar 

  8. Sireteanu, R. & Rettenbach, R. Perceptual learning in visual search: fast, enduring but non-specific. Vision Res. 35, 2037–2043 (1995).

    Article  CAS  Google Scholar 

  9. Efron, R. & Yund, E. W. Guided search: the effects of learning . Brain Cogn. 31, 369–386 (1996).

    Article  Google Scholar 

  10. Karni, A. & Sagi, D. Where practice makes perfect in texture discrimination: evidence for primary visual cortex plasticity. Proc. Natl. Acad. Sci. USA 88, 4966– 4970 (1991).

    Article  CAS  Google Scholar 

  11. Schneider, W. & Shiffrin, R. M. Controlled and automatic human information processing: I. detection, search and attention. Psychol. Rev. 84, 1–66 ( 1977).

    Article  Google Scholar 

  12. Shiffrin, R. M. & Schneider, W. Controlled and automatic human information processing: II. perceptual learning, automatic attending and a general theory. Psychol. Rev. 84, 127–191 (1977).

    Article  Google Scholar 

  13. Treisman, A., Verira, A. & Hayes, A. Automaticity and preattentive processing. Annu. Rev. Neurosci. 105, 341–362 (1992).

    CAS  Google Scholar 

  14. Ahissar, M. & Hochstein, S. Learning pop-out detection: specificities to stimulus characteristics. Vision Res. 36, 3487–3500 (1996).

    Article  CAS  Google Scholar 

  15. Braun, J. Vision and attention: the role of training. Nature 393, 424–425 (1998).

    Article  CAS  Google Scholar 

  16. Ahissar, M. & Hochstein, S. Attentional control of early perceptual learning. Proc. Natl. Acad. Sci. USA 90, 5718–5722 (1993).

    Article  CAS  Google Scholar 

  17. Ito, M., Westheimer, G. & Gilbert, C. D. Attention and perceptual learning modulate contextual influences on visual perception. Neuron 20, 1191–1197 (1998).

    Article  CAS  Google Scholar 

  18. Fahle, M. & Morgan, M. No transfer of perceptual learning between similar stimuli in the same retinal position. Curr. Biol. 6, 292–297 ( 1996).

    Article  CAS  Google Scholar 

  19. Crist, R. E, Kapadia, M., Westheimer, G. & Gilbert, C. D. Perceptual learning of spatial localization: specificity for orientation, position and context. J. Neurophysiol. 78, 2889–2894 (1997).

    Article  CAS  Google Scholar 

  20. Shiu, L. P. & Pashler, H. Improvement in line orientation discrimination is retinally local but dependent on cognitive set. Percept. Psychophys. 52, 582–588 (1992).

    Article  CAS  Google Scholar 

  21. Ahissar, M. & Hochstein, S. Task difficulty and the specificity of perceptual learning. Nature 387, 401– 406 (1997).

    Article  CAS  Google Scholar 

  22. Bravo, M. J. & Nakayama, K. The role of attention in different visual search tasks. Percept. Psychophys. 51, 465–472 (1992).

    Article  CAS  Google Scholar 

  23. Wolfe, J. M. in Current Directions in Psychological Sciences 124– 128 (Cambridge Univ. Press, Cambridge, 1992).

    Google Scholar 

  24. Wolfe, J. M., Cave, K. R. & Franzels, S. R. Guided Search: an alternative to the feature integration model of visual search. J. Exp. Psychol. Hum. Percept. Perform. 15, 419–433 ( 1989).

    Article  CAS  Google Scholar 

  25. Joseph, J. S., Chun, M. M. & Nakayama, K. Attentional requirements in a preattentive feature search task. Nature 387, 805–807 (1997).

    Article  CAS  Google Scholar 

  26. Chun, M. M. & Jiang, Y. Contextual cueing: implicit learning and memory of visual context guides spatial attention. Cognit. Psychol. 36, 28–71 ( 1998).

    Article  CAS  Google Scholar 

  27. Braun, J. & Sagi, D. Vision outside the focus of attention . Percept. Psychophys. 48, 45– 58 (1990).

    Article  CAS  Google Scholar 

  28. Nakayama, K. & Joseph, J. S. in The Attentive Brain (ed. Parasuraman, R.) 279–298 (MIT Press, Cambridge, Massachusetts 1997).

    Google Scholar 

  29. Fiorentini, A. & Berardi, N. Learning in grating waveform discrimination: Specificity for orientation and spatial frequency . Vision Res. 21, 1149– 1158 (1981).

    Article  CAS  Google Scholar 

  30. Nazir, T. A. & O'Regan, J. K. Some results on translation invariances in the human visual system. Spat. Vis. 5, 81–100 (1990).

    Article  CAS  Google Scholar 

  31. Kapadia, M. K., Ito, M., Gilbert, C. D. & Westheimer, G. Improvements in visual sensitivity by changes in local context: Parallel studies in human observers and in V1 of alert monkeys. Neuron 15, 843–856 (1995).

    Article  CAS  Google Scholar 

  32. Posner, M. I. & Gilbert, C. D. Attention and primary visual cortex. Proc. Natl. Acad. Sci. USA 96, 2585 –2587 (1999).

    Article  CAS  Google Scholar 

  33. Sillito, A. M., Grieve, K. L., Jones, H. E., Cudeiro, J. & Davis, J. Visual cortical mechanisms detecting focal orientation discontinuities. Nature 378, 492–496 (1995).

    Article  CAS  Google Scholar 

  34. Das, A. & Gilbert, C. D. Topography of contextual modulations mediated by short-range interactions in primary visual cortex. Nature 399, 655–661 ( 1999).

    Article  CAS  Google Scholar 

  35. Darian-Smith, C. & Gilbert, C. D. Axonal sprouting accompanies functional reorganization in adult cat striate cortex. Nature 368, 737–740 ( 1994).

    Article  CAS  Google Scholar 

  36. Gilbert, C. D., Das, A., Ito, M., Kapadia, M. & Westheimer, G. Spatial integration and cortical dynamics. Proc. Natl. Acad. Sci. USA 93, 615– 622 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Crist for discussions and comments on the manuscript. This work was supported by NIH grant EY07968 and a Burroughs Wellcome fellowship to M.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. D. Gilbert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sigman, M., Gilbert, C. Learning to find a shape. Nat Neurosci 3, 264–269 (2000). https://doi.org/10.1038/72979

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/72979

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing