Computational Approaches to Brain Function is a special supplement to the November 2000 issue of Nature Neuroscience. It was edited by Charles Jennings and Sandra Aamodt, and was supported by the National Institute of Mental Health, the National Institute of Neurological Disorders and Stroke, the National Institute on Alcohol Abuse and Alcoholism, and the National Institute on Drug Abuse.

Introduction
Computational approaches to brain function .. 1160
Charles Jennings and Sandra Aamodt

Sponsors’ Note
Computational neuroscience at the NIH ... 1161

History
The Hodgkin-Huxley theory of the action potential 1165
Michael Häusser
Half a century of Hebb ... 1166
H. Sebastian Seung
The basic unit of computation ... 1167
Anthony M. Zador
Models of motion detection ... 1168
Alexander Borst
The Pope and grandmother—a frog’s-eye view of theory 1169
Kevan A. C. Martin
Computation by neural networks ... 1170
Geoffrey E. Hinton
contents

viewpoints

Models are common; good theories are scarce 1177
Charles F. Stevens

In the brain, the model is the goal 1183
Bartlett W. M
d

Facilitating the science in computational neuroscience 1191
Lyle Borg-Graham

Models identify hidden assumptions 1198
Eve Marder

On theorists and data in computational neuroscience 1204
J. J. Hopfield

What does 'understanding' mean? 1211
Gilles Laurent

reviews

The role of single neurons in information processing 1171
Christof Koch and Idan Segev

Synaptic plasticity; taming the beast 1178
L. F. Abbott and Sacha B. Nelson

Neurocomputational models of working memory 1184
Daniel Durstewitz, Jeremy K. Seamans and Terrence J. Sejnowski

Computational approaches to sensorimotor transformations 1192
Alexandre Pouget and Lawrence H. Snyder

Models of object recognition 1199
Maximilian Riesenhuber and Tomaso Poggio

Computer simulation of cerebellar information processing 1205
Javier F. Medina and Michael D. Mauk

Computational principles of movement neuroscience 1212
Daniel M. Wolpert and Zoubin Ghahramani

Learning and selective attention 1218
Peter Dayan, Sham Kakade and P. Read Montague