Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Synaptic plasticity: taming the beast

Abstract

Synaptic plasticity provides the basis for most models of learning, memory and development in neural circuits. To generate realistic results, synapse-specific Hebbian forms of plasticity, such as long-term potentiation and depression, must be augmented by global processes that regulate overall levels of neuronal and network activity. Regulatory processes are often as important as the more intensively studied Hebbian processes in determining the consequences of synaptic plasticity for network function. Recent experimental results suggest several novel mechanisms for regulating levels of activity in conjunction with Hebbian synaptic modification. We review three of them—synaptic scaling, spike-timing dependent plasticity and synaptic redistribution—and discuss their functional implications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synaptic scaling is multiplicative.
Figure 2: The amount and type of synaptic modification (STDP) evoked by repeated pairing of pre- and postsynaptic action potentials in different preparations.
Figure 3: Time dependence of the normalized average transmission amplitude for a model synapse showing short-term depression and synaptic redistribution, based on the model described in the Math Box.

Similar content being viewed by others

References

  1. Bienenstock, E. L., Cooper, L. N. & Munro, P. W. Theory for the development of neuron selectivity, orientation specificity and binocular interaction in visual cortex. J. Neurosci. 2, 32–48 ( 1982).

    Article  CAS  Google Scholar 

  2. Abraham, W. C. Metaplasticity, a new vista across the field of synaptic plasticity. Prog. Neurobiol. 52, 303–323 (1997).

    Article  CAS  Google Scholar 

  3. Miller, K. D. & MacKay, D. J. C. The role of constraints in Hebbian learning. Neural Comput. 6, 100– 126 (1994).

    Article  Google Scholar 

  4. Turrigiano, G. G., Leslie, K. R., Desai, N. S., Rutherford, L. C. & Nelson, S. B. Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature 391 , 892–896 (1998).

    Article  CAS  Google Scholar 

  5. Lissen, D. V. et al. Activity differentially regulates the surface expression of synaptic AMPA and NMDA glutamate receptors. Proc. Natl. Acad. Sci. USA 95, 7097–7102 ( 1998).

    Article  Google Scholar 

  6. O'Brien, R. J. et al. Activity-dependent modulation of synaptic AMPA receptor accumulation . Neuron 21, 1067–1078 (1998).

    Article  CAS  Google Scholar 

  7. Turrigiano, G. G. & Nelson, S. B. Thinking globally, acting locally, AMPA receptor turnover and synaptic strength. Neuron 21, 933–941 ( 1998).

    Article  CAS  Google Scholar 

  8. Oja, E. A simplified neuron model as a principal component analyzer. J. Math. Biol. 15, 267–273 ( 1982).

    Article  CAS  Google Scholar 

  9. Watt, A. J., van Rossum, M. C. W., MacLeod, K. M., Nelson, S. B. & Turrigiano, G. G. Activity co-regulates quantal AMPA and NMDA currents at neocortical synapses. Neuron 26, 659–670 (2000).

    Article  CAS  Google Scholar 

  10. Lisman, J. The CaM-kinase hypothesis for the storage of synaptic memory. Trends Neurosci. 17, 406–412 (1994).

    Article  CAS  Google Scholar 

  11. Levy, W. B. & Steward, D. Temporal contiguity requirements for long-term associative potentiation/depression in the hippocampus. Neuroscience 8, 791–797 (1983).

    Article  CAS  Google Scholar 

  12. Gustafsson, B., Wigstrom, H., Abraham, W. C. & Huang, Y.-Y. Long-term potentiation in the hippocampus using depolarizing current pulses as the conditioning stimulus to single volley synaptic potentials. J. Neurosci. 7, 774–780 (1987).

    Article  CAS  Google Scholar 

  13. Debanne, D., Gahwiler, B. H. & Thompson, S. M. Asynchronous pre- and postsynaptic activity induces associative long-term depression in area CA1 of the rat hippocampus in vitro . Proc. Natl. Acad. Sci. USA 91, 1148– 1152 (1994).

    Article  CAS  Google Scholar 

  14. Markram, H., Lubke, J., Frotscher, M. & Sakmann, B. Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275, 213–215 ( 1997).

    Article  CAS  Google Scholar 

  15. Magee, J. C. & Johnston, D. A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons. Science 275, 209–213 (1997).

    Article  CAS  Google Scholar 

  16. Bell, C. C., Han, V. Z., Sugawara, Y. & Grant, K. Synaptic plasticity in a cerebellum-like structure depends on temporal order. Nature 387, 278–281 ( 1997).

    Article  CAS  Google Scholar 

  17. Debanne, D., Gahwiler, B. H. & Thompson, S. M. Long-term synaptic plasticity between pairs of individual CA3 pyramidal cells in rat hippocampal slice cultures. J. Physiol. (Lond.) 507, 237–247 ( 1998).

    Article  CAS  Google Scholar 

  18. Bi, G.-q. & Poo, M.-m. Activity-induced synaptic modifications in hippocampal culture, dependence on spike timing, synaptic strength and cell type. J. Neurosci. 18, 10464– 10472 (1998).

    Article  CAS  Google Scholar 

  19. Zhang, L. I., Tao, H. W., Holt, C. E., Harris, W. A. & Poo, M.-m. A critical window for cooperation and competition among developing retinotectal synapses. Nature 395, 37–44 (1998).

    Article  CAS  Google Scholar 

  20. Egger, V., Feldmeyer, D. & Sakmann, B. Coincidence detection and efficacy changes in synaptic connections between spiny stellate neurons of the rat barrel cortex. Nat. Neurosci. 2, 1098–1105 (1999).

    Article  CAS  Google Scholar 

  21. Feldman, D. E. Timing-based LTP and LTD at vertical inputs to layer II/III pyramidal cells in rat barrel cortex. Neuron 27, 45– 56 (2000).

    Article  CAS  Google Scholar 

  22. Linden, D. J. The return of the spike, postsynaptic action potentials and the induction of LTP and LTD. Neuron 4, 661– 666 (1999).

    Article  Google Scholar 

  23. Sourdet, V. & Debanne, D. The role of dendritic filtering in associative long-term synaptic plasticity. Learn. Mem. 6, 422–447 (1999).

    Article  CAS  Google Scholar 

  24. Kempter, R., Gerstner, W. & van Hemmen, J. L. Hebbian learning and spiking neurons. Physiol. Rev. E59, 4498–4514 (1999).

    Google Scholar 

  25. Song, S., Miller, K. D. & Abbott, L. F. Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nature Neurosci. 3, 919–926 (2000).

    Article  CAS  Google Scholar 

  26. Shadlen, M. N. & Newsome, W. T. Noise, neural codes and cortical organization. Curr. Opin. Neurobiol. 4, 569–579 (1994).

    Article  CAS  Google Scholar 

  27. Gerstner, W., Kempter, R., van Hemmen, J. L. & Wagner, H. A neuronal learning rule for sub-millisecond temporal coding. Nature 383, 76–78 ( 1996).

    Article  CAS  Google Scholar 

  28. Minai, A. A. & Levy, W. B. Sequence learning in a single trial . INNS World Congress of Neural Networks II, 505–508 (1993).

    Google Scholar 

  29. Abbott, L. F. & Blum, K. I. Functional significance of long-term potentiation for sequence learning and prediction. Cereb. Cortex 6, 406–416 ( 1996).

    Article  CAS  Google Scholar 

  30. Roberts, P. D. Computational consequences of temporally asymmetric learning rules, I. Differential Hebbian learning. J. Comput. Neurosci. 7, 235–246 (1999).

    Article  CAS  Google Scholar 

  31. Blum, K. I. & Abbott, L. F. A model of spatial map formation in the hippocampus of the rat. Neural Comput. 8, 85–93 (1996).

    Article  CAS  Google Scholar 

  32. Mehta, M. R., Quirk, M. C. & Wilson, M. Experience dependent asymmetric shape of hippocampal receptive fields. Neuron 25, 707– 715 (2000).

    Article  CAS  Google Scholar 

  33. Rao, R. & Sejnowski, T. J. in Advances in Neural Information Processing Systems 12 (eds. Solla, S. A., Leen, T. K. & Muller K.-B.) 164–170 (MIT Press, Cambridge, Massachusetts, 2000).

    Google Scholar 

  34. Thomson, A. M. & Deuchars, J. Temporal and spatial properties of local circuits in neocortex. Trends Neurosci. 17, 119–126 ( 1994).

    Article  CAS  Google Scholar 

  35. Grossberg, S. in Brain and Information, Event Related Potentials (eds. Karrer, R., Cohen, J. & Tueting, P.) 58–142 (New York Academy of Science, New York, 1984).

    Google Scholar 

  36. Liaw, J. S. & Berger, T. W. Dynamic synapses, a new concept of neural representation and computation. Hippocampus 6, 591–600 (1996).

    Article  CAS  Google Scholar 

  37. Abbott, L. F., Sen, K., Varela, J. A. & Nelson, S. B. Synaptic depression and cortical gain control. Science 275, 220–222 (1997).

    Article  CAS  Google Scholar 

  38. Tsodyks, M. V. & Markram, H. The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. Proc. Natl. Acad. Sci. USA 94, 719–723 (1997).

    Article  CAS  Google Scholar 

  39. Chance, F. S., Nelson, S. B. & Abbott, L. F. Synaptic depression and the temporal response characteristics of V1 simple cells. J. Neurosci. 18, 4785 –4799 (1998).

    Article  CAS  Google Scholar 

  40. Markram, H. & Tsodyks, M. V. Redistribution of synaptic efficacy between neocortical pyramidal neurones. Nature 382, 807–809 (1996).

    Article  CAS  Google Scholar 

  41. Volgushev, M., Voronin, L. L., Chistiakova, M. & Singer, W. Relations between long-term synaptic modifications and paired-pulse interactions in the rat neocortex. Eur. J. Neurosci. 9, 1656–1665 (1997).

    Article  CAS  Google Scholar 

  42. O'Donovan, M. J. & Rinzel, J. Synaptic depression, a dynamic regulator of synaptic communication with varied functional roles . Trends Neurosci. 20, 431– 433 (1997).

    Article  CAS  Google Scholar 

  43. Tsodyks, M. V., Uziel, A. & Markram, H. Synchrony generation in recurrent networks with frequency-dependent synapses. J. Neurosci. 20, RC50 (2000).

    Article  CAS  Google Scholar 

  44. Artun, O. B., Shouval, H. Z. & Cooper, L. N. The effect of dynamic synapses on spatiotemporal receptive fields in visual cortex. Proc. Natl. Acad. Sci. USA 95, 11999–12003 (1998).

    Article  CAS  Google Scholar 

  45. Mehta, M. R., Barnes, C. A. & McNaughton, B. L. Experience-dependent, asymmetric expansion of hippocampal place fields. Proc. Natl Acad. Sci. USA 94, 8918–8921 (1997).

    Article  CAS  Google Scholar 

  46. Finnerty, G. T., Roberts, L. & Connors, B. W. Sensory experience modifies short-term dynamics of neocortical synapses. Nature 400, 367– 371 (1999).

    Article  CAS  Google Scholar 

  47. Van Rossum, M. C., Bi, B. & Turrigiano, G. G. Learning rules that generate stable synaptic weight distributions. J. Neurosci. (in press).

  48. Rubin, J., Lee, D. D. & Sompolinsky, H. Equilibrium properties of temporally asymetric Hebbian plasticity. Phys Rev. lett. (in press).

  49. Selig, D. K., Nicoll, R. A. & Malenka, R. C. Hippocampal long-term potentiation preserves the fidelity of postsynaptic responses to presynaptic bursts. J. Neurosci. 19, 1236–1246 ( 1999).

    Article  CAS  Google Scholar 

  50. Buonomano, D. V. Distinct functional types of associative long-term potentiation in neocortical and hippocampal pyramidal neurons. J. Neurosci. 19, 6748–6754 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Research supported by NIH-MH58754, NIH-EY11116, the Sloan Center for Theoretical Neurobiology at Brandeis University and the W.M. Keck Foundation. We thank Gina Turrigiano, Eve Marder and Jesper Sjöström for comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. F. Abbott.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abbott, L., Nelson, S. Synaptic plasticity: taming the beast. Nat Neurosci 3 (Suppl 11), 1178–1183 (2000). https://doi.org/10.1038/81453

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/81453

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing