Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Collybistin, a newly identified brain-specific GEF, induces submembrane clustering of gephyrin

Abstract

The formation of postsynaptic GABAA and glycine receptor clusters requires the receptor-associated peripheral membrane protein gephyrin. Here we describe two splice variants of a novel gephyrin-binding protein, termed collybistin I and II, which belong to the family of dbl-like GDP/GTP exchange factors (GEFs). Co-expression of collybistin II with gephyrin induced the formation of submembrane gephyrin aggregates that accumulate hetero-oligomeric glycine receptors. Our data suggest that collybistin II regulates the membrane deposition of gephyrin by activating a GTPase of the Rho/Rac family. Therefore, this protein may be an important determinant of inhibitory postsynaptic membrane formation and plasticity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Primary structures of rat and human collybistin.
Figure 2: Domain comparison of collybistin and other members of the GEF family.
Figure 3: Collybistin mRNAs are mainly expressed in brain.
Figure 4: Distribution of collybistin and gephyrin mRNAs in the adult rat brain.
Figure 5: Western blot of recombinant collybistin and co-immunoprecipitation of recombinant gephyrin with collybistin.
Figure 6: Co-expression of gephyrin alters the distribution of collybistin I and II in HEK 293 cells.
Figure 7: Collybistin II/gephyrin co-aggregates recruit hetero-oligomeric but not homo-oligomeric GlyRs.

Similar content being viewed by others

References

  1. Froehner, S. C. Regulation of ion channel distribution at synapses. Annu. Rev. Neurosci. 16, 347–368 ( 1993).

    Article  CAS  Google Scholar 

  2. Ehlers, M. D., Mammen, A. L, Lau, L.-F. & Huganir, R. L. Synaptic targeting of glutamate receptors. Curr. Opin. Cell Biol. 8, 484–489 (1996).

    Article  CAS  Google Scholar 

  3. Kirsch, J., Meyer, G. & Betz, H. Synaptic targeting of ionotropic neurotransmitter receptors. Mol. Cell. Neurosci. 8, 93–98 (1996).

    Article  CAS  Google Scholar 

  4. Kuhse, J., Betz, H. & Kirsch, J. The inhibitory glycine receptor: architecture, synaptic localization and molecular pathology of a postsynaptic ion-channel complex. Curr. Opin. Neurobiol. 5, 318– 323 (1995).

    Article  CAS  Google Scholar 

  5. Kirsch, J. & Betz, H. Glycine receptor activation is required for receptor clustering in spinal neurons. Nature 392 , 717–720 (1998).

    Article  CAS  Google Scholar 

  6. Lévi, S., Vannier, C. & Triller, A. Strychnine-sensitive stabilization of postsynaptic glycine receptor clusters. J. Cell Sci. 111, 335 –345 (1998).

    PubMed  Google Scholar 

  7. Kirsch, J., Wolters, I., Triller, A. & Betz, H. Gephyrin antisense oligonucleotides prevent glycine receptor clustering in spinal neurons. Nature 366, 745–748 ( 1993).

    Article  CAS  Google Scholar 

  8. Feng, G. et al. Dual requirement for gephyrin in glycine receptor clustering and molybdoenzyme activity. Science 282, 1321–1324 (1998).

    Article  CAS  Google Scholar 

  9. Sassoè-Pognetto, M. et al. Colocalization of gephyrin and GABAA-receptor subunits in the rat retina. J. Comp. Neurol. 357, 1–14 (1995).

    Article  Google Scholar 

  10. Todd, A. J., Watt, C., Spike, R. C. & Sieghart, W. Colocalization of GABA, glycine and their receptors at synapses in the rat spinal cord. J. Neurosci. 16, 974–982 (1996).

    Article  CAS  Google Scholar 

  11. Essrich, C., Lorez, M., Benson, J., Fritschy, J. M. & Lüscher, B. Postsynaptic clustering of major GABAA receptor subtypes requires the γ2 subunit and gephyrin. Nat. Neurosci. 1, 563–571 ( 1998).

    Article  CAS  Google Scholar 

  12. Kneussel, M. et al. Loss of postsynaptic GABAA receptor clustering in gephyrin-deficient mice. J. Neurosci. 19, 9289–9297 (1999).

    Article  CAS  Google Scholar 

  13. Stallmeyer, B. et al. The neurotransmitter-anchoring protein gephyrin reconstitutes molybdenum-cofactor biosynthesis in bacteria, plants and mammalian cells. Proc. Natl. Acad. Sci. USA 96, 1333– 1338 (1999).

    Article  CAS  Google Scholar 

  14. Kirsch, J. et al. The 93-kDa glycine receptor-associated protein binds to tubulin. J. Biol. Chem. 266, 22242– 22245 (1991).

    CAS  PubMed  Google Scholar 

  15. Kirsch, J. & Betz, H. The postsynaptic localization of the glycine receptor-associated protein gephyrin is regulated by the cytoskeleton. J. Neurosci. 15, 4148– 4156 (1995).

    Article  CAS  Google Scholar 

  16. Kirsch, J., Kuhse, J. & Betz, H. Targeting of glycine receptor subunits to gephyrin-rich domains in transfected human embryonic kidney cells. Mol. Cell. Neurosci. 6, 450–461 (1995).

    Article  CAS  Google Scholar 

  17. Meyer, G., Kirsch, J., Betz, H. & Langosch, D. Identification of a gephyrin binding motif on the glycine receptor β subunit. Neuron 15, 563–572 ( 1995).

    Article  CAS  Google Scholar 

  18. Kneussel, M., Hermann, A., Kirsch, J. & Betz, H. Hydrophobic interactions mediate binding of the glycine receptor β-subunit to gephyrin. J. Neurochem. 72, 1323–1326 (1999).

    Article  CAS  Google Scholar 

  19. Fields, S. & Song, O. K. A novel genetic system to detect protein–protein interactions. Nature 340, 245–246 (1988).

    Article  Google Scholar 

  20. Akagi, H. & Miledi, R. Heterogeneity of glycine receptors and their messenger RNAs in rat brain and spinal cord. Science 242, 270–272 ( 1988).

    Article  CAS  Google Scholar 

  21. Hart, M. J. et al. Cellular transformation and guanine nucleotide exchange activity are catalyzed by a common domain on the DBL oncogene product. J. Biol. Chem. 269, 62–65 (1994).

    CAS  PubMed  Google Scholar 

  22. Cerione, R. A. & Zheng, Y. The Dbl family of oncogenes. Curr. Opin. Cell Biol. 8, 216 –222 (1996).

    Article  CAS  Google Scholar 

  23. Harlan, J. E., Hajduk, P., Sup Yoon, H. & Fesik, S. W. Pleckstrin homology domains bind to phosphatidylinositol 4,5-bisphosphate. Nature 372, 375–379 (1994).

    Article  Google Scholar 

  24. Lim, W. A., Richards, F. M. & Fox, R. O. Structural determinants of peptide-binding orientation and of sequence specificity in SH3 domains. Nature 372, 375–379 (1994).

    Article  CAS  Google Scholar 

  25. Manser, E. et al. PAK kinases are directly coupled to the PIX family of nucleotide exchange factors. Mol. Cell 1, 183– 192 (1998).

    Article  CAS  Google Scholar 

  26. Pfeiffer, F., Simler, R., Grenningloh, G. & Betz, H. Monoclonal antibodies and peptide mapping reveal structural similarities between the subunits of the glycine receptor of rat spinal cord. Proc. Natl. Acad. Sci. USA 81, 7224–7227 (1984).

    Article  CAS  Google Scholar 

  27. Kins, S., Kuhse, J., Laube, B., Betz, H. & Kirsch, J. Incorporation of a gephyrin-binding motif targets NMDA receptors to gephyrin-rich domains in HEK 293 cells. Eur. J. Neurosci. 11, 740–744 ( 1999).

    Article  CAS  Google Scholar 

  28. Hateboer, G. et al. BS69, a novel adenovirus E1A-associated protein that inhibits E1A transactivation. EMBO J. 14, 3159– 3169 (1995).

    Article  CAS  Google Scholar 

  29. Keino-Masu, K. et al. Deleted in colorectal cancer (DCC) encodes a netrin receptor. Cell 87, 175–185 (1996).

    Article  CAS  Google Scholar 

  30. Béchade, C., Colin, I., Kirsch, J., Betz, H. & Triller, A. Glycine receptor α subunit and gephyrin expression in cultured spinal neurons: a quantitative analysis. Eur. J. Neurosci. 8, 429–435 ( 1996).

    Article  Google Scholar 

  31. Mammoto, A. et al. Interactions of drebrin and gephyrin with profilin. Biochem. Biophys. Res. Comm. 243, 86– 89 (1998).

    Article  CAS  Google Scholar 

  32. Sabatini, D. et al. RAFT1 signaling requires interaction with the clustering protein gephyrin. Science 284, 1161– 1164 (1999).

    Article  CAS  Google Scholar 

  33. Musacchio, A., Gibson, T., Rice, P., Thompson, J. & Saraste, M. The PH domain: a common piece in the structural patchwork of signalling proteins. Trends Biochem. Sci. 18, 343–348 (1993).

    Article  CAS  Google Scholar 

  34. Kirsch, J. Assembly of signaling machinery at the postsynaptic membrane. Curr. Opin. Neurobiol. 9, 329–335 (1999).

    Article  CAS  Google Scholar 

  35. Hall, A. Rho GTPases and the actin cytoskeleton. Science 279 , 509–514 (1998).

    Article  CAS  Google Scholar 

  36. Tapon, N. & Hall, A. Rho, Rac and Cdc42 GTPases regulate the organization of the actin cytoskeleton. Curr. Opin. Cell Biol. 9, 86–92 (1997 ).

    Article  CAS  Google Scholar 

  37. Minden, A., Lin, A., Claret, F. X., Abo, A. & Karin, M. Selective activation of the JNK signaling cascade and c-Jun transcriptional activity by the small GTPases Rac and Cdc42Hs. Cell 81, 1147–1157 (1995).

    Article  CAS  Google Scholar 

  38. Nobes, C. & Hall, A. Rho, Rac and Cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia and filopodia. Cell 81, 53–62 (1995).

    Article  CAS  Google Scholar 

  39. Chen, H.-J., Rojas-Soto, M., Oguni, A. & Kennedy, M. B. A synaptic ras-GTPase activating protein (p135/SynGAP) inhibited by CaM kinase II. Neuron 20, 895–904 (1998).

    Article  CAS  Google Scholar 

  40. Kim, J. H., Liao, D., Lau, L.-F. & Huganir, R. L. SynGAP: a synaptic RasGAP that associates with the PSD-95/SAP90 protein family. Neuron 20, 683–691 ( 1998).

    Article  CAS  Google Scholar 

  41. Brambilla, R. et al. A role for the ras-signalling pathway in synaptic transmission and longterm memory. Nature 390, 281– 286 (1997).

    Article  CAS  Google Scholar 

  42. Taleb, O. & Betz, H. Expression of the human glycine receptor α1 subunit in Xenopus oocytes: apparent affinities of agonists increase at high receptor densities. EMBO J. 13, 1318–1324 (1994).

    Article  CAS  Google Scholar 

  43. Harper, J. W., Adami, G. R., Wei, N., Keyomarsi, K. & Elledge, S. J. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75, 805–816 (1993).

    Article  CAS  Google Scholar 

  44. Prior, P. et al. Primary structure and alternative splice variants of gephyrin, a putative glycine receptor-tubulin linker protein. Neuron 8, 1161–1170 (1992).

    Article  CAS  Google Scholar 

  45. Frohmann, M. A., Dush, M. K. & Martin, G. R. Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc. Natl. Acad. Sci. USA 85, 8998– 9002 (1988).

    Article  Google Scholar 

  46. Kirsch, J. & Betz, H. Widespread expression of gephyrin, a putative receptor-tubulin linker protein, in rat brain. Brain Res. 621, 301–310 ( 1993).

    Article  CAS  Google Scholar 

  47. Grenningloh, G. et al. The strychnine-binding subunit of the glycine receptor shows homology with nicotinic acetylcholine receptors. Nature 328, 215–220 (1987).

    Article  CAS  Google Scholar 

  48. Grenningloh, G. et al. Cloning and expression of the 58 kd β subunit of the inhibitory glycine receptor. Neuron 4, 963–970 (1990).

    Article  CAS  Google Scholar 

  49. Kirsch, J., Malosio, M.-L., Wolters, I. & Betz, H. Distribution of gephyrin transcripts in the adult and developing rat brain. Eur. J. Neurosci. 5, 1109– 1117 (1993).

    Article  CAS  Google Scholar 

  50. Heng, H. H. Q., Squire, J. & Tsui, L.-C. High resolution mapping of mammalian genes by in situ hybridization to free chromatin. Proc. Natl. Acad. Sci. USA 89, 9509–9513 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Maria Fischer for the construction of the bait vector, Ina Bartnik for technical assistance with in-situ hybridizations and immunocytochemistry and M. Baier and H. Reitz for help in preparing the manuscript. Expression vectors encoding BS69 and the netrin receptor were gifts from R. Bernards and M. Tessier-Lavigne, respectively. This study was supported by Deutsche Forschungsgemeinschaft (Ki339/7-1, SFB 474-B7 (JK), and Ki339/9-1), Stifterverband für die Deutsche Wissenschaft, BMBF (01KV9539/3) and Fonds der Chemischen Industrie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinrich Betz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kins, S., Betz, H. & Kirsch, J. Collybistin, a newly identified brain-specific GEF, induces submembrane clustering of gephyrin. Nat Neurosci 3, 22–29 (2000). https://doi.org/10.1038/71096

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/71096

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing