Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A causal account of the brain network computations underlying strategic social behavior

Abstract

During competitive interactions, humans have to estimate the impact of their own actions on their opponent's strategy. Here we provide evidence that neural computations in the right temporoparietal junction (rTPJ) and interconnected structures are causally involved in this process. By combining inhibitory continuous theta-burst transcranial magnetic stimulation with model-based functional MRI, we show that disrupting neural excitability in the rTPJ reduces behavioral and neural indices of mentalizing-related computations, as well as functional connectivity of the rTPJ with ventral and dorsal parts of the medial prefrontal cortex. These results provide a causal demonstration that neural computations instantiated in the rTPJ are neurobiological prerequisites for the ability to integrate opponent beliefs into strategic choice, through system-level interaction within the valuation and mentalizing networks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental design and model evaluation.
Figure 2: Effects of rTPJ-cTBS on behavior.
Figure 3: Stimulation site and local neural effects of rTPJ-cTBS.
Figure 4: rTPJ-cTBS effects on neural activity in dmPFC.
Figure 5: rTPJ-cTBS effects on value coding in vmPFC.
Figure 6: Relationship between neural effects of cTBS and model parameters.

Similar content being viewed by others

References

  1. Darwin, C. On the Origins of Species by Means of Natural Selection (Murray, 1859).

  2. Hampton, A.N., Bossaerts, P. & O'Doherty, J.P. Neural correlates of mentalizing-related computations during strategic interactions in humans. Proc. Natl. Acad. Sci. USA 105, 6741–6746 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Devaine, M., Hollard, G. & Daunizeau, J. The social Bayesian brain: does mentalizing make a difference when we learn? PLoS Comput. Biol. 10, e1003992 (2014).

    PubMed  PubMed Central  Google Scholar 

  4. Camerer, C., Ho, T.-H. & Chong, J.-K. A cognitive hierarchy model of games. Q. J. Econ. 119, 861–898 (2004).

    Google Scholar 

  5. Schurz, M., Radua, J., Aichhorn, M., Richlan, F. & Perner, J. Fractionating theory of mind: a meta-analysis of functional brain imaging studies. Neurosci. Biobehav. Rev. 42, 9–34 (2014).

    PubMed  Google Scholar 

  6. Behrens, T.E.J., Hunt, L.T. & Rushworth, M.F.S. The computation of social behavior. Science 324, 1160–1164 (2009).

    CAS  PubMed  Google Scholar 

  7. Bhatt, M.A., Lohrenz, T., Camerer, C.F. & Montague, P.R. Neural signatures of strategic types in a two-person bargaining game. Proc. Natl. Acad. Sci. USA 107, 19720–19725 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Carter, R.M., Bowling, D.L., Reeck, C. & Huettel, S.A. A distinct role of the temporal-parietal junction in predicting socially guided decisions. Science 337, 109–111 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Mars, R.B., Shea, N.J., Kolling, N. & Rushworth, M.F.S. Model-based analyses: Promises, pitfalls, and example applications to the study of cognitive control. Q J Exp Psychol (Hove) 65, 252–267 (2012).

    Google Scholar 

  10. Hunt, L.T. et al. Mechanisms underlying cortical activity during value-guided choice. Nat. Neurosci. 15, 470–476, S1–S3 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Huang, Y.Z., Edwards, M.J., Rounis, E., Bhatia, K.P. & Rothwell, J.C. Theta burst stimulation of the human motor cortex. Neuron 45, 201–206 (2005).

    CAS  PubMed  Google Scholar 

  12. Ruff, C.C., Driver, J. & Bestmann, S. Combining TMS and fMRI: from 'virtual lesions' to functional-network accounts of cognition. Cortex 45, 1043–1049 (2009).

    PubMed  Google Scholar 

  13. Ruff, C.C. et al. Concurrent TMS-fMRI and psychophysics reveal frontal influences on human retinotopic visual cortex. Curr. Biol. 16, 1479–1488 (2006).

    CAS  PubMed  Google Scholar 

  14. Coricelli, G. & Nagel, R. Neural correlates of depth of strategic reasoning in medial prefrontal cortex. Proc. Natl. Acad. Sci. USA 106, 9163–9168 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. De Martino, B., O'Doherty, J.P., Ray, D., Bossaerts, P. & Camerer, C. In the mind of the market: theory of mind biases value computation during financial bubbles. Neuron 79, 1222–1231 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Amodio, D.M. & Frith, C.D. Meeting of minds: the medial frontal cortex and social cognition. Nat. Rev. Neurosci. 7, 268–277 (2006).

    CAS  PubMed  Google Scholar 

  17. Clithero, J.A. & Rangel, A. Informatic parcellation of the network involved in the computation of subjective value. Soc. Cogn. Affect. Neurosci. 9, 1289–1302 (2014).

    PubMed  Google Scholar 

  18. Zhu, L., Mathewson, K.E. & Hsu, M. Dissociable neural representations of reinforcement and belief prediction errors underlie strategic learning. Proc Natl. Acad Sci USA 109, 1419–1424 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Nicolle, A. et al. An agent independent axis for executed and modeled choice in medial prefrontal cortex. Neuron 75, 1114–1121 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Sack, A.T., Camprodon, J.A., Pascual-Leone, A. & Goebel, R. The dynamics of interhemispheric compensatory processes in mental imagery. Science 308, 702–704 (2005).

    CAS  PubMed  Google Scholar 

  21. van den Bos, W., Talwar, A. & McClure, S.M. Neural correlates of reinforcement learning and social preferences in competitive bidding. J. Neurosci. 33, 2137–2146 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Hare, T.A., Camerer, C.F., Knoepfle, D.T. & Rangel, A. Value computations in ventral medial prefrontal cortex during charitable decision making incorporate input from regions involved in social cognition. J. Neurosci. 30, 583–590 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Haroush, K. & Williams, Z.M. Neuronal prediction of opponent's behavior during cooperative social interchange in primates. Cell 160, 1233–1245 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Suzuki, S. et al. Learning to simulate others' decisions. Neuron 74, 1125–1137 (2012).

    CAS  PubMed  Google Scholar 

  25. Wunderlich, K., Dayan, P. & Dolan, R.J. Mapping value based planning and extensively trained choice in the human brain. Nat. Neurosci. 15, 786–791 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Tricomi, E., Balleine, B.W. & O'Doherty, J.P. A specific role for posterior dorsolateral striatum in human habit learning. Eur. J. Neurosci. 29, 2225–2232 (2009).

    PubMed  PubMed Central  Google Scholar 

  27. Tsakiris, M., Costantini, M. & Haggard, P. The role of the right temporo-parietal junction in maintaining a coherent sense of one's body. Neuropsychologia 46, 3014–3018 (2008).

    PubMed  Google Scholar 

  28. Wold, A., Limanowski, J., Walter, H. & Blankenburg, F. Proprioceptive drift in the rubber hand illusion is intensified following 1 Hz TMS of the left EBA. Front. Hum. Neurosci. 8, 390 (2014).

    PubMed  PubMed Central  Google Scholar 

  29. Heinisch, C., Dinse, H.R., Tegenthoff, M., Juckel, G. & Brüne, M. An rTMS study into self-face recognition using video-morphing technique. Soc. Cogn. Affect. Neurosci. 6, 442–449 (2011).

    PubMed  Google Scholar 

  30. Young, L., Camprodon, J.A., Hauser, M., Pascual-Leone, A. & Saxe, R. Disruption of the right temporoparietal junction with transcranial magnetic stimulation reduces the role of beliefs in moral judgments. Proc. Natl. Acad. Sci. USA 107, 6753–6758 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Carter, R.M. & Huettel, S.A. A nexus model of the temporal-parietal junction. Trends Cogn. Sci. 17, 328–336 (2013).

    PubMed  PubMed Central  Google Scholar 

  32. Geng, J.J. & Vossel, S. Re-evaluating the role of TPJ in attentional control: contextual updating? Neurosci. Biobehav. Rev. 37, 2608–2620 (2013).

    PubMed  PubMed Central  Google Scholar 

  33. Baron-Cohen, S. Theory of mind and autism: a review. Int. Rev. Res. Ment. Retard. 23, 169–184 (2000).

    Google Scholar 

  34. Baron-Cohen, S., Wheelwright, S., Hill, J., Raste, Y. & Plumb, I. The “Reading the Mind in the Eyes” test revised version: a study with normal adults, and adults with Asperger syndrome or high-functioning autism. J. Child Psychol. Psychiatry 42, 241–251 (2001).

    CAS  PubMed  Google Scholar 

  35. Schaafsma, S.M., Pfaff, D.W., Spunt, R.P. & Adolphs, R. Deconstructing and reconstructing theory of mind. Trends Cogn. Sci. 19, 65–72 (2015).

    PubMed  Google Scholar 

  36. Baumgartner, T., Knoch, D., Hotz, P., Eisenegger, C. & Fehr, E. Dorsolateral and ventromedial prefrontal cortex orchestrate normative choice. Nat. Neurosci. 14, 1468–1474 (2011).

    CAS  PubMed  Google Scholar 

  37. Smith, D.V., Clithero, J.A., Boltuck, S.E. & Huettel, S.A. Functional connectivity with ventromedial prefrontal cortex reflects subjective value for social rewards. Soc. Cogn. Affect. Neurosci. 9, 2017–2025 (2014).

    PubMed  PubMed Central  Google Scholar 

  38. Ruff, C.C. & Fehr, E. The neurobiology of rewards and values in social decision making. Nat. Rev. Neurosci. 15, 549–562 (2014).

    CAS  PubMed  Google Scholar 

  39. Johnson, E.J. & Ratcliff, R. Computational and process models of decision making in psychology and behavioral economics. in Neuroeconomics: Decision Making and the Brain (eds. Gimlicher, P.W. & Fehr, E.) 358–365 (Academic Press, 2014).

  40. Button, K.S. et al. Power failure: why small sample size undermines the reliability of neuroscience. Nat. Rev. Neurosci. 14, 365–376 (2013).

    CAS  PubMed  Google Scholar 

  41. Spiegelhalter, D.J., Best, N.G., Carlin, B.P. & van der Linde, A. Bayesian measures of model complexity and fit. J. R. Stat. Soc. Ser. B. Stat. Methodol. 64, 583–639 (2002).

    Google Scholar 

  42. Owen, A.M., McMillan, K.M., Laird, A.R. & Bullmore, E. N-back working memory paradigm: a meta-analysis of normative functional neuroimaging studies. Hum. Brain Mapp. 25, 46–59 (2005).

    PubMed  PubMed Central  Google Scholar 

  43. Bosch-Domènech, A., Montalvo, J.G., Nagel, R. & Satorra, A. One, two, (three), infinity, ...: Newspaper and lab beauty-contest experiments. Am. Econ. Rev. 92, 1687–1701 (2002).

    Google Scholar 

  44. Murphy, R.O., Ackermann, K.A. & Handgraaf, M. Measuring Social Value Orientation. Judgm. Decis. Mak. 6, 771–781 (2011).

    Google Scholar 

  45. Yarkoni, T., Poldrack, R.A., Nichols, T.E., Van Essen, D.C. & Wager, T.D. Large-scale automated synthesis of human functional neuroimaging data. Nat. Methods 8, 665–670 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Posse, S. et al. Enhancement of BOLD-contrast sensitivity by single-shot multi-echo functional MR imaging. Magn. Reson. Med. 42, 87–97 (1999).

    CAS  PubMed  Google Scholar 

  47. Schmiedeskamp, H. et al. Improvements in parallel imaging accelerated functional MRI using multiecho echo-planar imaging. Magn. Reson. Med. 63, 959–969 (2010).

    PubMed  PubMed Central  Google Scholar 

  48. Grueschow, M., Polania, R., Hare, T.A. & Ruff, C.C. Automatic versus Choice-Dependent Value Representations in the Human Brain. Neuron 85, 874–885 (2015).

    CAS  PubMed  Google Scholar 

  49. Ashburner, J. & Friston, K.J. Unified segmentation. Neuroimage 26, 839–851 (2005).

    PubMed  Google Scholar 

  50. Harvey, A.K. et al. Brainstem functional magnetic resonance imaging: disentangling signal from physiological noise. J. Magn. Reson. Imaging 28, 1337–1344 (2008).

    PubMed  Google Scholar 

  51. Hutton, C. et al. The impact of physiological noise correction on fMRI at 7T. Neuroimage 57, 101–112 (2011).

    CAS  PubMed  Google Scholar 

  52. Kasper, L. et al. Cardiac artefact correction for human brainstem fMRI at 7T. Neuroimage 47, S100 (2009).

    Google Scholar 

  53. Kruschke, J.K. What to believe: Bayesian methods for data analysis. Trends Cogn. Sci. 14, 293–300 (2010).

    PubMed  Google Scholar 

  54. Daw, N.D. in Decision Making, Affect, and Learning. Attention and Performance XXIII (eds. Delgado, M.R., Phelps, E.A. & Robbins, T.W.) 555 (Oxford University Press, 2011 ).

  55. Ahn, W.Y., Krawitz, A., Kim, W., Busmeyer, J.R. & Brown, J.W. A model-based fMRI analysis with hierarchical Bayesian parameter estimation. J. Neuroscience Psychology Econ. 4, 95–110 (2011).

    Google Scholar 

  56. Fudenberg, D. & Tirole, J. Game Theory (MIT Press, 1991).

  57. Grinband, J., Wager, T.D., Lindquist, M., Ferrera, V.P. & Hirsch, J. Detection of time-varying signals in event-related fMRI designs. Neuroimage 43, 509–520 (2008).

    PubMed  Google Scholar 

  58. Eklund, A., Nichols, T.E. & Knutsson, H. Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates. Proc. Natl. Acad. Sci. USA 113, 7900–7905 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. McLaren, D.G., Ries, M.L., Xu, G. & Johnson, S.C. A generalized form of context-dependent psychophysiological interactions (gPPI): a comparison to standard approaches. Neuroimage 61, 1277–1286 (2012).

    PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the Swiss National Science Foundation (CRSII3_141965 and 105314_152891) to C.C.R. We thank the staff of the Laboratory for Social and Neural Systems Research for practical support.

Author information

Authors and Affiliations

Authors

Contributions

C.A.H. designed the study, collected data, performed analysis and wrote manuscript. S.S. performed analysis and contributed to the manuscript. R.P. performed analysis and contributed to the manuscript. M.M. contributed to TMS–fMRI procedure, collected data and contributed to the manuscript. J.P.O. designed the study and contributed to the manuscript. C.C.R. designed the study, contributed to data analysis and wrote the manuscript.

Corresponding authors

Correspondence to Christopher A Hill or Christian C Ruff.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Hierarchical Bayesian influence model

Graphical representation of the Hierarchical Bayesian influence model fitted to the data for each subject. Clear shapes indicate latent variables and filled shapes observed variables (in this case, the choice of the subject/employee Chyee and the choice of the opponent/employer Chyer). The index t denotes trial and s denotes subject. The same procedure was applied for fictitious play and Reinforcement learning where μ(s,t) depends only on Chyer and follows equation [8] and [3] respectively.

Supplementary Figure 2 Deviation from random responding

The population-level parameter P(Work) deviates from the Mixed-Nash Equilibrium of 0.5 for vertex-cTBS (pmcmc 0) and rTPJ-cTBS (pmcmc 0). Standard deviations are shown in black.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1 and 2 and Supplementary Tables 1–3 (PDF 528 kb)

Supplementary Methods Checklist (PDF 601 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hill, C., Suzuki, S., Polania, R. et al. A causal account of the brain network computations underlying strategic social behavior. Nat Neurosci 20, 1142–1149 (2017). https://doi.org/10.1038/nn.4602

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.4602

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing