Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Young neurons from medial ganglionic eminence disperse in adult and embryonic brain

Abstract

In this study, we identified neuronal precursors that can disperse through adult mammalian brain tissue. Transplanted neuronal precursors from embryonic medial ganglionic eminence (MGE), but not from lateral ganglionic eminence (LGE) or neocortex, dispersed and differentiated into neurons in multiple adult brain regions. In contrast, only LGE cells were able to migrate efficiently from the adult subventricular zone to the olfactory bulb. In embryonic brain slices, MGE cells migrated extensively toward cortex. Our results demonstrate that cells in different germinal regions have unique migratory potentials, and that adult mammalian brain can support widespread dispersion of specific populations of neuronal precursors. These findings could be useful in repair of diffuse brain damage.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Migration of embryonic neuronal precursors in vitro.
Figure 2: Transplants of neocortex, LGE or MGE into the adult striatum.
Figure 3: Quantitation of neuronal dispersion and migration from the SVZ to the olfactory bulb.
Figure 4: Characterization of transplanted MGE cells: horizontal sections of host brains stained with X-gal.
Figure 5: Migration of fluorescently labeled MGE cells through the adult striatum.
Figure 6: Migration of cells in the embryonic brain.

References

  1. Lindvall, O. Prospects of transplantation in human neurodegenerative diseases. Trends Neurosci. 14, 376–384 (1991).

    Article  CAS  PubMed  Google Scholar 

  2. Bjorklund, A. Neural transplantation—an experimental tool with clinical possibilities. Trends Neurosci. 14, 319– 322 (1991).

    Article  CAS  PubMed  Google Scholar 

  3. Isacson, O. & Deacon, T. Neural transplantation studies reveal the brain's capacity for continuous reconstruction. Trends Neurosci. 20, 477–482 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  4. Martinez-Serrano, A. & Bjorklund, A. Immortalized neural progenitor cells for CNS gene transfer and repair. Trends Neurosci. 20, 530–538 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  5. Graybiel, A. M., Liu, F. C. & Dunnett, S. B. Intrastriatal grafts derived from fetal striatal primordia. I. Phenotypy and modular organization. J. Neurosci. 9, 3250–3271 ( 1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pakzaban, P., Deacon, T. W., Burns, L. H. & Isacson, O. Increased proportion of acetylcholinesterase-rich zones and improved morphological integration in host striatum of fetal grafts derived from the lateral but not the medial ganglionic eminence. Exp. Brain Res. 97, 13–22 (1993).

    Article  CAS  PubMed  Google Scholar 

  7. Olsson, M., Campbell, K., Wictorin, K. & Bjorklund, A. Projection neurons in fetal striatal transplants are predominantly derived from the lateral ganglionic eminence. Neuroscience 69, 1169–1182 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Olsson, M., Bentlage, C., Wictorin, K., Campbell, K. & Bjorklund, A. Extensive migration and target innervation by striatal precursors after grafting into the neonatal striatum. Neuroscience 79, 57–78 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Schmechel, D. E. & Rakic, P. A Golgi study of radial glia cells in developing monkey telencephalon: Morphogenesis and transformation into astrocytes. Anat. Embryol. 156, 115 –152 (1979).

    Article  CAS  Google Scholar 

  10. Pixley, S. K. R. & De Vellis, J. Transition between immature radial glia and mature astrocytes studied with a monoclonal antibody to vimentin. Dev. Brain Res. 15, 201– 209 (1984).

    Article  Google Scholar 

  11. Rubin, B. P. et al. Inhibition of PC12 cell attachment and neurite outgrowth by detergent solubilized CNS myelin proteins. Eur. J. Neurosci. 7, 2524–2529 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Lois, C., Garcia-Verdugo, J. M. & Alvarez-Buylla, A. Chain migration of neuronal precursors. Science 271, 978–981 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Lois, C. & Alvarez-Buylla, A. Long-distance neuronal migration in the adult mammalian brain. Science 264, 1145–1148 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. Doetsch, F. & Alvarez-Buylla, A. Network of tangential pathways for neuronal migration in adult mammalian brain. Proc. Natl. Acad. Sci. USA 93, 14895–14900 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Peretto, P., Merighi, A., Fasolo, A. & Bonfanti, L. Glial tubes in the rostral migratory stream of the adult rat. Brain Res. Bull. 42, 9–21 (1997 ).

    Article  CAS  PubMed  Google Scholar 

  16. Wichterle, H., Garcia-Verdugo, J. M. & Alvarez-Buylla, A. Direct evidence for homotypic, glia-independent neuronal migration. Neuron 18, 779– 791 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Zigova, T. et al. Neuronal progenitor cells of the neonatal subventricular zone differentiate and disperse following transplantation into the adult rat striatum. Cell Transplant. 7, 137– 156 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Forss-Petter, S. et al. Transgenic mice expressing β-galactosidase in mature neurons under neuron-specific enolase promoter control. Neuron 5, 187–197 ( 1990).

    Article  CAS  PubMed  Google Scholar 

  19. Hu, H. Y. & Rutishauser, U. A septum-derived chemorepulsive factor for migrating olfactory interneuron precursors. Neuron 16, 933–940 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Luskin, M. B. Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron 11, 173–189 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. Zigova, T. et al. Comparison of the patterns of migration and the destinations of homotopically transplanted neonatal subventricular zone cells and heterotopically transpalnted telencephalic ventricular zone cells. Dev. Biol. 173, 1–16 (1996).

    Article  Google Scholar 

  22. Lin, R. C. & Matesic, D. F. Immunohistochemical demonstration of neuron-specific enolase and microtubule-associated protein 2 in reactive astrocytes after injury in the adult forebrain. Neuroscience 60, 11–16 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. Mullen, R. J., Buck, C. R. & Smith, A. M. NeuN, a neuronal specific nuclear protein in vertebrates. Development 116, 201–211 (1992).

    CAS  PubMed  Google Scholar 

  24. Marusich, M. F., Furneaux, H. M., Henion, P. D. & Weston, J. A. Hu neuronal proteins are expressed in proliferating neurogenic cells. J. Neurobiol. 25, 143–155 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Peters, E. Palay, S. L. & Webster, F. H. The Fine Structure of the Nervous System: Neurons and their Supporting Cells (Oxford Univ. Press, New York, 1991).

    Google Scholar 

  26. O'Rourke, N. A., Sullivan, D. P., Kaznowski, C. E., Jacobs, A. A. & McConnell, S. K. Tangential migration of neurons in the developing cerebral cortex. Development 121, 2165–2176 (1995).

    CAS  PubMed  Google Scholar 

  27. Anderson, S. A., Eisenstat, D. D., Shi, L. & Rubenstein, J. L. Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes. Science 278, 474– 476 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Tamamaki, N., Fujimori, K. E. & Takauji, R. Origin and route of tangentially migrating neurons in the developing neocortical intermediate zone. J. Neurosci. 17, 8313–8323 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rubenstein, J. L., Shimamura, K., Martinez, S. & Puelles, L. Regionalization of the prosencephalic neural plate. Annu. Rev. Neurosci. 21, 445–477 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  30. Levitt, P., Barbe, M. F. & Eagleson, K. L. Patterning and specification of the cerebral cortex. Annu. Rev. Neurosci. 20, 1– 24 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Redies, C. & Takeichi, M. Cadherins in the developing central nervous system: an adhesive code for segmental and functional subdivisions. Dev. Biol. 180, 413–423 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Rakic, P. Principles of neural cell migration. Experientia 46 , 882–891 (1990).

    Article  CAS  PubMed  Google Scholar 

  33. Andersson, C., Tytell, M. & Brunso-Bechtold, J. Transplantation of cultured type 1 astrocyte cell suspensions into young, adult and aged rat cortex: cell migration and survival. Int. J. Dev. Neurosci. 11, 555–568 (1993).

    Article  CAS  PubMed  Google Scholar 

  34. Raisman, G., Lawrence, J. M. & Brook, G. A. Schwann cells transplanted into the CNS. Int. J. Dev. Neurosci. 11, 651–669 (1993).

    Article  CAS  PubMed  Google Scholar 

  35. Kawamura, K., Nanami, T., Kikuchi, Y. & Kitakami, A. Grafted granule and Purkinje cells can migrate into the mature cerebellum of normal adult rats. Exp. Brain Res. 70, 477– 484 (1988).

    Article  CAS  PubMed  Google Scholar 

  36. Rakic, P. & Sidman, R. L. Telencephalic origin of pulvinar neurons in the fetal human brain. Z. Anat. Entwicklungsgesch. 129, 53–82 (1969).

    Article  CAS  PubMed  Google Scholar 

  37. Letinic, K. & Kostovic, I. Transient fetal structure, the gangliothalamic body, connects telencephalic germinal zone with all thalamic regions in the developing human brain. J. Comp. Neurol. 384, 373–395 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. De Carlos, J. A., Lopez-Mascaraque, L. & Valverde, F. Dynamics of cell migration from the lateral ganglionic eminence in the rat. J. Neurosci. 16, 6146 –6156 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fishell, G. Striatal precursors adopt cortical identities in response to local cues. Development 121, 803–812 (1995).

    CAS  PubMed  Google Scholar 

  40. Brüstle, O., Maskos, U. & McKay, R. D. Host-guided migration allows targeted introduction of neurons into the embryonic brain. Neuron 15, 1275–1285 (1995).

    Article  PubMed  Google Scholar 

  41. Campbell, K., Olsson, M. & Björklund, A. Regional incorporation and site-specific differentiation of striatal precursors transplanted to the embryonic forebrain ventricle. Neuron 15, 1259–1273 (1995).

    Article  CAS  PubMed  Google Scholar 

  42. Olsson, M., Campbell, K. & Turnbull, D. H. Specification of mouse telencephalic and mid-hindbrain progenitors following heterotopic ultrasound-guided embryonic transplantation. Neuron 19, 761–772 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Deacon, T. W., Pakzaban, P. & Isacson, O. The lateral ganglionic eminence is the origin of cells committed to striatal phenotypes: neural transplantation and developmental evidence. Brain Res. 668, 211– 219 (1994).

    Article  PubMed  Google Scholar 

  44. Alvarez-Buylla, A. & Vicario, D. S. Simple microcomputer system for mapping tissue sections with the light microscope. J. Neurosci. Methods 25, 165–173 (1988).

    Article  CAS  PubMed  Google Scholar 

  45. Alvarez-Buylla, A., Buskirk, D. R. & Nottebohm, F. Monoclonal antibody reveals radial glia in adult avian brain. J. Comp. Neurol. 264, 159– 170 (1987).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Enrique Font, Amy Newman and Suzanna Ort for comments on the manuscript. This work was supported by NIH grants NS28478 and NICHD HD32116 to A.A.-B. H.W. and D.G.H. are recipients of the DeWitt Wallace/Reader's Digest fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hynek Wichterle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wichterle, H., Garcia-Verdugo, J., Herrera, D. et al. Young neurons from medial ganglionic eminence disperse in adult and embryonic brain. Nat Neurosci 2, 461–466 (1999). https://doi.org/10.1038/8131

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/8131

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing