Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A physiological correlate of the 'spotlight' of visual attention

Abstract

Here we identify a neural correlate of the ability to precisely direct visual attention to locations other than the center of gaze. Human subjects performed a task requiring shifts of visual attention (but not of gaze) from one location to the next within a dense array of targets and distracters while functional MRI was used to map corresponding displacements of neural activation within visual cortex. The cortical topography of the purely attention-driven activity precisely matched the topography of activity evoked by the cued targets when presented in isolation. Such retinotopic mapping of attention-related activation was found in primary visual cortex, as well as in dorsomedial and ventral occipital visual areas previously implicated in processing the attended target features. These results identify a physiological basis for the effects of spatially directed visual attention.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Retinotopic attentional modulation compared to activation evoked by cued targets alone.
Figure 2: Comparison of visual field topography (coded by temporal phase of fMRI response) for attentional foci (y-axis) versus single segments (x-axis).
Figure 3: Further characterization of attentional effects.
Figure 4: Amplitude and timecourse of attentional modulation.
Figure 5: Example of retinotopic mapping of cortical activation in an individual subject.

Similar content being viewed by others

References

  1. von Helmholtz, H. Treatise on Physiological Optics Vol. III (Dover, New York, 1910).

    Google Scholar 

  2. James, W. The Principles of Psychology Vol. I (Classics of Psychiatry and Behavioral Sciences Library, Birmingham, 1890).

  3. LaBerge, D. Spatial extent of attention to letters and words. J. Exp. Psychol. Hum. Percept. Perform. 9, 371–379 (1983).

    Article  CAS  Google Scholar 

  4. Crick, F. Function of the thalamic reticular complex: The searchlight hypothesis. Proc. Natl. Acad. Sci. USA 81, 4586– 4590 (1984).

    Article  CAS  Google Scholar 

  5. Duncan, J. Selective attention and the organization of visual information. J. Exp. Psychol. Gen. 113, 501–517 (1984).

    Article  CAS  Google Scholar 

  6. Posner, M. I. & Petersen, S. E. The attention system of the human brain. Annu. Rev. Neurosci. 13, 25–42 (1990).

    Article  CAS  Google Scholar 

  7. Crick, F. The Astonishing Hypothesis: The Scientific Search for the Soul (Scribner, New York, 1994).

    Google Scholar 

  8. Luck, S. J. & Hillyard, S. A. The role of attention in feature detection and conjunction discrimination: an electrophysiological analysis. J. Neurosci. 80, 281–297 (1995).

    CAS  Google Scholar 

  9. Desimone, R., Wessinger, M., Thomas, L. & Schneider, W. Attentional control of visual perception: cortical and subcortical mechanisms. Cold Spring Harbor Symp. Quant. Biol. 55, 963–971 (1990).

    Article  CAS  Google Scholar 

  10. Corbetta, M. et al. Selective and divided attention during visual discrimination of shape, color, and speed: functional anatomy by positron emission tomography. J. Neurosci. 11, 2383– 2402 (1991).

    Article  CAS  Google Scholar 

  11. Corbetta, M., Miezin, F. M., Shulman, G. L. & Petersen, S. E. A PET study of visuospatial attention. J. Neurosci. 13, 1202–1226 (1993).

    Article  CAS  Google Scholar 

  12. Motter, B. C. Neural correlates of attentive selection for color or luminance in extrastriate area V4. J. Neurosci. 14, 2178– 2189 (1994).

    Article  CAS  Google Scholar 

  13. Treue, S. & Maunsell, J. H. R. Attentional modulation of visual motion processing in cortical areas MT and MST. Nature 382, 539–541 (1996).

    Article  CAS  Google Scholar 

  14. Beauchamp, M. S., Cox, R. W. & DeYoe, E. A. Graded effects of spatial and featural attention on human area MT and associated motion processing areas. J. Neurophysiol. 78, 516–520 (1997).

    Article  CAS  Google Scholar 

  15. O'Craven, K. M. et al. Voluntary attention modulates fMRI activity in human MT-MST. Neuron 18, 591– 598 (1997).

    Article  CAS  Google Scholar 

  16. Kastner, S., De Weerd, P., Desimone, R. & Ungerleider, L. G. Mechanisms of directed attention in the human extrastriate cortex as revealed by functional MRI. Science 282, 108– 111 (1998).

    Article  CAS  Google Scholar 

  17. McAdams, C. J. & Maunsell, J. H. R. Effects of attention on orientation-tuning function of single neurons in macaque cortical area V4. J. Neurosci. 19, 431– 441 (1999).

    Article  CAS  Google Scholar 

  18. Hillyard, S. A. Combining steady-state visual evoked potentials and fMRI to localize brain activity during selective attention. Hum. Brain Mapp. 5, 287–292 (1997).

    Article  CAS  Google Scholar 

  19. Heinze, H. J. et al. Combined spatial and temporal imaging of brain activity during visual selective attention in humans. Nature 372, 543–546 (1994).

    Article  CAS  Google Scholar 

  20. Mangun, G. R. et al. Covariations in ERP and PET measures of spatial selective attention in human extrastriate visual cortex. Hum. Brain Mapp. 5, 273–279 (1997).

    Article  CAS  Google Scholar 

  21. Woldorf, M. G. et al. Retinotopic organization of early visual spatial attention effects as revealed by PET and ERPs. Hum. Brain Mapp. 5, 280–286 (1997).

    Article  Google Scholar 

  22. Schneider, W., Noll, D. C. & Cohen, J. D. Functional topographic mapping of the cortical ribbon in human vision with conventional MRI scanners. Nature 365, 150–153 (1993).

    Article  CAS  Google Scholar 

  23. Sereno, M. I. et al. Borders of multiple visual areas in humans revealed by functional MRI. Science 268, 889–893 (1995).

    Article  CAS  Google Scholar 

  24. DeYoe, E. A. et al. Mapping striate and extrastriate visual areas in human cerebral cortex. Proc. Natl. Acad. Sci. USA 93, 2382–2386 (1996).

    Article  CAS  Google Scholar 

  25. Engel, S. A., Glover, G. H. & Wandell, B. A. Retinotopic organization in human visual cortex and the spatial precision of functional MRI. Cereb. Cortex 7, 181–192 (1997).

    Article  CAS  Google Scholar 

  26. Talairach, J. & Tournoux, P. Co-Planar Stereotaxic Atlas of the Human Brain (Thieme, New York, 1988).

    Google Scholar 

  27. Desimone, R. & Schein, S. J. Visual properties of neurons in area V4 of the macaque: Sensitivity to stimulus form. J. Neurophysiol. 57, 835–868 (1987).

    Article  CAS  Google Scholar 

  28. Lueck, C. J. et al. The colour centre in the cerebral cortex of man. Nature 340, 386–389 (1989).

    Article  CAS  Google Scholar 

  29. Schein, S. J. & Desimone, R. Spectral properties of V4 neurons in the macaque. J. Neurosci. 10, 3369– 3389 (1990).

    Article  CAS  Google Scholar 

  30. Beauchamp, M. S., Haxby, J. V., Jennings, J. & DeYoe, E. A. An FMRI adaptation of the Farnsworth-Munsell 100 hue test reveals human color-selective areas. Cereb. Cortex (in press).

  31. Hadjikhani, N. et al. Retinotopy and color sensitivity in human visual cortical area V8. Nat. Neurosci. 1, 235– 241 (1998).

    Article  CAS  Google Scholar 

  32. He, S., Cavanagh, P. & Intriligator, J. Attentional resolution and the locus of visual awareness. Nature 383, 334–337 (1996).

    Article  CAS  Google Scholar 

  33. Tootell, R. B. H. et al. The retinotopy of spatial attention. Neuron 21, 1409–1422 (1998).

    Article  CAS  Google Scholar 

  34. DeYoe, E. A., Neitz, J., Miller, D. & Wieser, J. Functional magnetic resonance imaging (FMRI) of visual cortex in human subjects using a unique video graphics stimulator. Proc. Soc. Magn. Reson. Med. 3, 1394 (1993).

    Google Scholar 

  35. Treisman, A. M. Perceptual grouping and attention in visual search for features and for objects. J. Exp. Psychol. Hum. Percept. Perform. 8, 194–214 (1982).

    Article  CAS  Google Scholar 

  36. Bandettini, P. A., Jesmanowicz, A., Wong, E. C. & Hyde, J. S. Processing strategies for functional MRI of the human brain. Magn. Reson. Med. 30, 161–173 (1993).

    Article  CAS  Google Scholar 

  37. Saad, Z. S., DeYoe, E. A. & Ropella, K. M. in Proceedings of the 19th International Conference - IEEE.EMBS 460–463 (Chicago, Illinois, 1997).

    Google Scholar 

Download references

Acknowledgements

Our thanks to Jon Wieser for technical assistance. Supported by NIH grants EY10244 and MH51358 to EAD and a Keck Foundation grant to the Medical College of Wisconsin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edgar A. DeYoe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brefczynski, J., DeYoe, E. A physiological correlate of the 'spotlight' of visual attention. Nat Neurosci 2, 370–374 (1999). https://doi.org/10.1038/7280

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/7280

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing