Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Hepatocyte growth factor, a versatile signal for developing neurons

Abstract

Here we summarize recent findings on the biology of hepatocyte growth factor (HGF, also known as scatter factor), focusing on its effects on developing neurons. HGF is both a chemoattractant and a survival factor for embryonic motor neurons. In addition, sensory and sympathetic neurons and their precursors respond to HGF with increased differentiation, survival and axonal outgrowth. The broad spectrum of HGF activities and its observed synergy with other neurotrophic factors suggest that the major role of HGF is to potentiate the response of developing neurons to specific signals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Summary of HGF effects on motor neurons, sensory neurons and sympathetic neurons.
Figure 2: Schematic representation of signaling pathways activated by HGF, and potential synergistic actions with CNTF and NGF.

Similar content being viewed by others

References

  1. Birchmeier, C. & Gherardi, E. Developmental roles of HGF/SF and its receptor, the c-Met tyrosine kinase. Trends Cell Biol. 8, 404–410 (1998).

    Article  CAS  Google Scholar 

  2. Birchmeier, W. et al. Role of HGF/SF and c-met in morphogenesis and metastasis of epithelial cells. Ciba Found. Symp. 212, 230–240 (1997).

    CAS  PubMed  Google Scholar 

  3. Jeffers, M., Rong, S. & Vande Woude, G. F. Hepatocyte growth factor/scatter factor - Met signaling in tumorigenesis and invasion/metastasis. J. Mol. Med. 74, 505–513 (1996).

    Article  CAS  Google Scholar 

  4. Streit, A. et al. A role for HGF/SF in neuronal induction and its expression in Hensen's node during gastrulation. Development 121, 813–824 (1995).

    CAS  PubMed  Google Scholar 

  5. Streit, A. et al. Preventing the loss of competence for neural induction: HGF/SF, L5 and Sox-2. Development 124, 1191– 1202 (1997).

    CAS  PubMed  Google Scholar 

  6. Schmidt, C. et al. Scatter factor/hepatocyte growth factor is essential for liver development. Nature 373, 699– 702 (1995).

    Article  CAS  Google Scholar 

  7. Uehara, Y. et al. Placental defect and embryonic lethality in mice lacking hepatocyte growth factor/scatter factor. Nature 373, 702–705 (1995).

    Article  CAS  Google Scholar 

  8. Bladt, F., Riethmacher, D., Isenmann, S., Aguzzi, A. & Birchmeier, C. Essential role for the c- met receptor in the migration of myogenic precursor cells into the limb bud. Nature 376, 768–771 (1995).

    Article  CAS  Google Scholar 

  9. Maina, F. et al. Uncoupling of Grb2 from the Met receptor in vivo reveals complex roles in muscle development. Cell 87, 531 –542 (1996).

    Article  CAS  Google Scholar 

  10. Sonnenberg, E., Meyer, D., Weidner, K. M. & Birchmeier, C. Scatter factor/hepatocyte growth factor and its receptor, the c-met tyrosine kinase, can mediate a signal exchange between mesenchyme and epithelia during mouse development. J. Cell Biol. 123, 223 –235 (1993).

    Article  CAS  Google Scholar 

  11. Jung, W. et al. Expression and functional interaction of hepatocyte growth factor-scatter factor and its receptor c-met in mammalian brain. J. Cell Biol. 126, 485–494 ( 1994).

    Article  CAS  Google Scholar 

  12. Achim, C. L. et al. Expression of HGF and c-Met in the developing and adult brain. Dev. Brain Res. 102, 299– 303 (1997).

    Article  CAS  Google Scholar 

  13. Thewke, D. P. & Seeds, N. W. Expression of hepatocyte growth factor/scatter factor, its receptor, c-Met, and tissue-type plasminogen activator during development of the murine olfactory system. J. Neurosci. 16, 6933–6944 ( 1996).

    Article  CAS  Google Scholar 

  14. Hamanoue, M. et al. Neurotrophic effect of hepatocyte growth factor on central nervous system neurons in vitro. J. Neurosci. Res. 43, 554–564 (1996).

    Article  CAS  Google Scholar 

  15. Di Renzo, M. F. et al. Selective expression of the Met/HGF receptor in human central nervous system microglia. Oncogene 8, 219 –222 (1993).

    CAS  PubMed  Google Scholar 

  16. Krasnoselsky, A. et al. Hepatocyte growth factor is a mitogen for Schwann cells and is present in neurofibromas. J. Neurosci. 14, 7284–7290 (1994).

    Article  CAS  Google Scholar 

  17. Ebens, A. et al. Hepatocyte growth factor/Scatter factor is an axonal chemoattractant and a neurotrophic factor for spinal motor neurons. Neuron 17, 1157–1172 (1996).

    Article  CAS  Google Scholar 

  18. Maina, F., Hilton, M. C., Ponzetto, C., Davies, A. M. & Klein, R. Met receptor signaling is required for sensory nerve development and HGF promotes axonal growth and survival of sensory neurons. Genes Devel. 11, 3341 –3350 (1997).

    Article  CAS  Google Scholar 

  19. Wong, V. et al. Hepatocyte growth factor promotes motor neuron survival and synergizes with ciliary neurotrophic factor. J. Biol. Chem. 272 , 5187–5191 (1997).

    Article  CAS  Google Scholar 

  20. Yamamoto, Y. et al. Hepatocyte growth factor (HGF/SF) is an essential muscle-derived survival factor for a subpopulation of embryonic motoneurons. Development 124, 2903–2913 (1997).

    CAS  PubMed  Google Scholar 

  21. Oppenheim, R. W. Neurotrophic survival molecules for motoneurons: an embarrassment of riches. Neuron 17, 195–197 (1996).

    Article  CAS  Google Scholar 

  22. Fagan, A. M. et al. TrkA, but not TrkC, receptors are essential for survival of sympathetic neurons in vivo. J. Neurosci. 16, 6208–6218 (1996).

    Article  CAS  Google Scholar 

  23. Wyatt, S., Pinon, L. G. P., Ernfors, P. & Davies, A. M. Sympathetic neuron survival and TrkA expression in NT-3-deficient mouse embryos. EMBO J. 16, 3115–3123 (1997).

    Article  CAS  Google Scholar 

  24. Maina, F. et al. Multiple roles for hepatocyte growth factor in sympathetic neuron development. Neuron 20, 835– 846 (1998).

    Article  CAS  Google Scholar 

  25. Yang, X.-M. et al. Autocrine hepatocyte growth factor provides a local mechanism for promoting axonal growth. J. Neurosci. 18, 8369–8381 (1998).

    Article  CAS  Google Scholar 

  26. Ponzetto, C. et al. A multifunctional docking site mediates signaling and transformation by the hepatocyte growth factor/scatter factor receptor family. Cell 77, 261–271 ( 1994).

    Article  CAS  Google Scholar 

  27. Boccaccio, C. et al. Induction of epithelial tubules by growth factor HGF depends on the STAT pathway. Nature 391, 285– 288 (1998).

    Article  CAS  Google Scholar 

  28. Weidner, K. M. et al. . Interaction between Gab1 and the c-Met receptor tyrosine kinase is responsible for epithelial morphogenesis. Nature 384, 173–176 (1996).

    Article  CAS  Google Scholar 

  29. Rodrigues, G. A., Park, M. & Schlessinger, J. Activation of the JNK pathway is essential for transformation by the Met oncogene. EMBO J. 16, 2634– 2645 (1997).

    Article  CAS  Google Scholar 

  30. Nguyen, L. et al. Association of the multisubstrate docking protein Gab1 with the hepatocyte growth factor receptor requires a functional Grb2 binding site involving tyrosine 1356. J. Biol. Chem. 272, 20811–20819 (1997).

    Article  CAS  Google Scholar 

  31. Kochhar, K. S. & Iyer, A. P. Hepatocyte growth factor induces activation of Nck and phospholipase C-gamma in lung carcinoma cells. Cancer Lett. 12, 163– 169 (1996).

    Article  Google Scholar 

  32. Chen, H. C., Chan, P. C., Tang, M. J., Cheng, C. H. & Chang, T. J. Tyrosine phosphorylation of focal adhesion kinase stimulated by hepatocyte growth factor leads to mitogen-activated protein kinase activation. J. Biol. Chem. 273, 25777 –25782 (1998).

    Article  CAS  Google Scholar 

  33. Monard, D. Cell-derived proteases and protease inhibitors are regulators of neurite outgrowth. Trends Neurosci. 11, 541– 544 (1988).

    Article  CAS  Google Scholar 

  34. Pittman, R. N. & Buettner, H. M. Degradation of extracellular matrix by neuronal proteases. Dev. Neurosci. 11, 361–375 (1989).

    Article  CAS  Google Scholar 

  35. Rong, S. et al. Tumorigenesis induced by co-expression of human hepatocyte growth factor and the human met protooncogene leads to high levels of expression of the ligand and receptor. Cell Growth Differ. 4, 563–569 (1993).

    CAS  PubMed  Google Scholar 

  36. Ponzetto, C. et al. Specific uncoupling of GRB2 from the Met receptor: differential effect on transformation and motility. J. Biol. Chem. 271, 14119–14123 (1996).

    Article  CAS  Google Scholar 

  37. Royal, I. & Park, M. Hepatocyte growth factor-induced scatter of Madin-Darby canine kidney cells requires phosphatidylinositol 3-kinase. J. Biol. Chem. 270, 27780– 27787 (1995).

    Article  CAS  Google Scholar 

  38. Ridley, A. J., Comoglio, P. M. & Hall, A. Regulation of scatter factor/hepatocyte growth factor responces by Ras, Rac, and Rho in MDCK cells. Mol. Cell. Biol. 15, 1110–1122 ( 1995).

    Article  CAS  Google Scholar 

  39. Hartmann, G., Weidner, K. M., Schwarz, H. & Birchmeier, W. The motility signal of scatter factor/hepatocyte growth factor mediated through the receptor tyrosine kinase Met requires intracellular action of Ras. J. Cell. Biol. 269, 21936–21939 (1994).

    CAS  Google Scholar 

  40. Barinaga, M. Neurotrophic factors enter the clinic. Science 264, 772–774 (1994).

    Article  CAS  Google Scholar 

  41. Lindvall, O. & Odin, P. Clinical application of cell transplantation and neurotrophic factors in CNS disorders. Curr. Opin. Neurobiol. 4, 752–757 ( 1994).

    Article  CAS  Google Scholar 

  42. Schatzl, H. M. Neurotrophic factor: ready to go? Trends Neurosci. 18, 463–464 (1995).

    Article  CAS  Google Scholar 

  43. Nishi, R. Neurotrophic factors: two are better than one. Science 265, 1052–1053 (1994).

    Article  CAS  Google Scholar 

  44. Tuszynski, M. H., Roberts, J., Senut, M. C. & Gage, F. H. Gene therapy in the adult primate brain: intraparenchymal grafts of cells genetically modified to produce nerve growth factor prevent cholinergic neuronal degeneration. Gene Ther. 3, 305– 314 (1996).

    CAS  PubMed  Google Scholar 

  45. Martinez-Serrano, A., Fischer, W. & Bjorklund, A. Reversal of age-dependent cognitive impairments and cholinergic neuron atrophy by NGF-secreting neural progenitors grafted to the basal forebrain. Neuron 15, 473– 484 (1995).

    Article  CAS  Google Scholar 

  46. Apfel, S. C., Lipson, L., Arezzo, J. C. & Kessler, J. A. Nerve growth factor prevents neuropathy in mice. Ann. Neurol. 29, 87–90 (1991).

    Article  CAS  Google Scholar 

  47. Apfel, S. C., Arezzo, J. C., Brownlee, M., Federoff, H. & Kessler, J. A. Nerve growth factor administration protects against experimental diabetic sensory neuropathy. Brain Res. 634, 7–12 ( 1994).

    Article  CAS  Google Scholar 

  48. Shiota, G., Wang, T.C., Nakamura, T. & Schmidt, E. V. Hepatocyte growth factor in transgenic mice: Effects on hepatocyte growth, liver regeneration and gene expression. Hepatology 19, 962– 972 (1994).

    Article  CAS  Google Scholar 

  49. Allen, R. E., Sheenan, S. M., Taylor, R. G., Kendall, T. L. & Rice, G. M. Hepatocyte growth factor activates quiescent skeletal muscle satellite cells in vitro. J. Cell Physiol. 165, 307–312 ( 1995).

    Article  CAS  Google Scholar 

  50. Ueki, T., et al. Hepatocyte growth factor gene therapy of liver cirrhosis in rats. Nat. Med. 5, 226–230 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to F. Helmbacher for assistance with figures, and to F. Helmbacher, R. Dono, G. Wilkinson, and K. Kullander for comments on the manuscript. F.M. is supported by a grant from the DFG (SFB 317). Our own work is in part supported by an EU Biotechnology network grant.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Flavio Maina or Rüdiger Klein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maina, F., Klein, R. Hepatocyte growth factor, a versatile signal for developing neurons. Nat Neurosci 2, 213–217 (1999). https://doi.org/10.1038/6310

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/6310

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing