Supplementary Figure 1

Effects of nicotine exposure from birth to 3 weeks of age on dendritic complexity across cortical regions assessed at 3 months of age.

(a-c) Sholl analysis of the apical dendritic tree in frontal (F), parietal (P) and occipital (O) regions of cortex. Exposure to nicotine in the postnatal period significantly increased dendritic complexity across cortical regions. (a) $F(1,80)=6.901$, $p=0.010321$. (b) $F(1,30)=16.525$, $p=0.0000001$. (c) $F(1,65)=32.586$, $p=0.000319$. (d-f) Layer-specific effects of postnatal-only nicotine exposure on dendritic complexity in superficial (1/2), intermediate (3/4) and deep (5/6) layers of cortex. (d) $F(1,20)=5.625$, $p=0.027854$. (e) $F(1,46)=13.719$, $p=0.000565$. (f) $F(1,23)=10.746$, $p=0.003299$, * $p<0.05$. F: Sac, n=28; Nic, n=54; P: Sac, n=36; Nic, n=31; O: Sac, n=20; Nic, n=12; 1/2: Sac, n=9; Nic, n=13; 3/4: Sac, n=18, Nic, n=30; 5/6: Sac, n=10. Nic, n=15.
Supplementary Figure 2

Volcano plot showing all probe sets evaluated in the microarray study.

(a) Genes whose expression levels were significantly different between developmentally nicotine exposed animals and controls are shown as red dots. (b) 6 of 15 probe sets were significantly altered in independent samples at 3 months of age following nicotine treatment throughout the pre- and postnatal period compared to the control group: $F(1,8)=7.77$ for Ash2l, $p=0.02365035$; $F(1,8)=6.797$ for Chsy3, $p=0.03127061$; $F(1,8)=0.64$ for Zfp91, $p=0.44681333$; $F(1,8)=0.41$ for Cllar, $p=0.5987164$; $F(1,8)=26.538$ for Zcchc11, $p=0.00087271$; $F(1,8)=5.18$ for Cep192, $p=0.05240060$; $F(1,8)=1.24$ for Alkbh1, $p=0.29780695$; $F(1,8)=0.72$ for Gmeb1, $p=0.42080639$; $F(1,8)=0.36$ for Unc13b, $p=0.56511006$; $F(1,8)=0.035$ for Duox1, $p=0.85625319$; $F(1,8)=8.82$ for Scula2, $p=0.01787528$; $F(1,8)=1.84$ for Zip597, $p=0.21198878$; $F(1,8)=1.18$ for Ctnnal1, $p=0.30899997$; $F(1,8)=0.65$ for Ntrk, $p=0.44341660$; $F(1,8)=7.397$ for Tmem107, $p=0.02625917$. (* $p<0.05$, ** $p<0.01$ with Sidak’s test; # $p<0.05$ with LSD test for multiple comparisons). 2 to 4 animals were pooled for each biological replicate. Five Biological replicates were used for each condition (Sac: $n=5$; Nic: $n=5$). A total of 26 animals were used (Sac: $n=14$; Nic: $n=12$).
Changes in H3K4me3 associated with the promoter sites of multiple gene loci following developmental nicotine exposure.

(a) Gene ontology (GO) analysis identified significantly regulated gene groups, all of which are related to glutamatergic synaptic function. (b) Gene structure and coordination of Ank1 loci associated with H3K4me3 depicted in Fig. 3c. (c) Whisker plot showing verification of changes in histone H3Me3K4 levels associated with gene loci identified in the ChIP-seq analysis by ChIP-PCR in independent samples from subjects treated with nicotine from birth to 21 days (postnatal-only) and evaluated at 3 months of age: F(1,8) = 11.02 for Eif4a, p = 0.01054575; F(1,8) = 6.028 for Izumo1, p = 0.03961426; F(1,8) = 1.406 for Gpr19, p = 0.26974334; F(1,8) = 21.7 for Litaf, p = 0.00162698; F(1,8) = 15.839 for kcnq1, p = 0.00406270; F(1,8) = 19.147 for Lage3, p = 0.00236227; F(1,8) = 17.512 for Fbxw4, p = 0.00305973; F(1,8) = 16.594 for Fgfl2, p = 0.00356573; F(1,8) = 77.18 for Sepsec, p = 0.00002212; F(1,8) = 9.979 for Rin2, p = 0.01341607; F(1,8) = 64.634 for Rabbgp1l, p = 0.00004215; F(1,8) = 81.61 for Apc, p = 0.0001803; F(1,8) = 17.505 for Apol, p = 0.00306323; F(1,8) = 99.602 for Lpc, p = 0.00000862; F(1,8) = 45.502 for Cdk5rap2, p = 0.0014572; F(1,8) = 565.869 for Ing4, p = 0.00000091; F(1,8) = 118.256 for Ank3, p = 0.00000452; F(1,8) = 43.276 for Ntm, p = 0.00017324; F(1,8) = 487.52 for Zfp658, p = 0.00000002; F(1,8) = 8.77 for Ybx3, p = 0.01810693; F(1,7) = 41.57 for Sorcs1, p = 0.00019884; F(1,8) = 153.564 for Lar2, p = 0.00000168; F(1,8) = 50.843 for Ank1, p = 0.00009898; F(1,8) = 242.093 for Acacb, p = 0.00000092; F(1,8) = 223.283 for Mdaa2, p = 0.00000040; F(1,8) = 110.84 for Chl1, p = 0.00000592; F(1,8) = 23.981 for Autos2, p = 0.00119824; F(1,8) = 483 for Mbn1, p = 0.50674655; F(1,8) = 10.846 for Cpeb1, p = 0.01096747; F(1,8) = 15.121 for Zfp65, p = 0.00461852; F(1,8) = 5.928 for Chd9, p = 0.0489817; F(1,8) = 24.034 for Syl1, p = 0.00119008; F(1,8) = 7.836 for Sp110, p = 0.02322340; F(1,8) = 51.276 for Sorbs2, p = 0.00009607; F(1,8) = 24.889 for Slc35a2, p = 0.00106755; F(1,8) = 19.501 for Met2c, p = 0.00238483 (*p < 0.05 with LSD test for multiple comparisons). Each replicate was a pool of 2-4 brain samples and 5 replicates were used for each condition (Sac: n = 5 pools from 14 animals; Nic: n = 5 pools from 12 animals). (d) Ash2l and Met2c binding sites overlap with sites of H3K4me3 enrichment. Among these, GO analysis of 106 genomic sites identified as differentially enriched following nicotine exposure reveals that overlapped genomic sites are associated with synapse related functions.
Supplementary Figure 4

Regulation of Mef2c locus by nicotine treatment in vivo.

(a) Mef2c mRNA levels were significantly elevated at 21 days of age, immediately after nicotine exposure was completed $F(1,8)=19.237, p=0.00232999$. 5 Biological replicates per each condition from pooled female animals; Nic = 11 Sac = 15. (b) Histone H3 acetylation associated with the Mef2c locus was significantly increased as a result of nicotine exposure during development $F(1,8)=118.802, p=0.00000445$. 5 Biological replicates per each condition from pooled female animals; Nic = 12 Sac = 12. (c) Nicotine exposure during development significantly increased the level of H3K4me3 associated with the Mef2c locus ($F(5,24)=10.403, p=0.000021$) with Tukey’s multiple comparison test. Frontal sac vs Frontal nic, $p=0.001277$; Parietal sac vs Parietal nic, $p=0.005846$; Occipital sac vs Occipital nic, $p=0.011952$. 5 Biological replicates per each condition from pooled female animals; Nic = 12 Sac = 12.

* $p < 0.05$, *** $p < 0.001$ with dk’s test.
Supplementary Figure 5

Evaluation of shRNA-mediated knock down of Ash2l and Mef2c protein levels in neural progenitor cells.

a) shRNA targeting Ash2l. b) shRNA targeting Mef2c. Original Western blots presented in Supplementary Figure 7.
Supplementary Figure 6

Spread following in utero electroporation.

Example of the extent of shRNA spread and of GFP expression in a layer 6 cortical pyramidal neuron following in utero electroporation of shRNAs.
Supplementary Figure 7

Original images of representative western blot images in Figure 4 and Supplementary Figure 5.

(a-d) indicate uncropped LICOR machine scanned gel image with annotation. (e) Scanned film image of Figure 4 immunoprecipitation experiment. (f-g) Nicotine induced Wdr5 and Rbbp5 expression blot: original scanned image from LICOR machine. (i-j) Scanned images from LICOR machine for shRNA knockdown efficiency experiment presented in Supplementary Figure 5.
<table>
<thead>
<tr>
<th>ID</th>
<th>Gene Name</th>
<th>FDR (pre&postnatal)</th>
<th>FDR (postnatal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2210408I21Rik</td>
<td>RIKEN cDNA 2210408I21 gene</td>
<td>8.93E-07</td>
<td>0.038155606</td>
</tr>
<tr>
<td>A530032D15Rik</td>
<td>RIKEN cDNA A530032D15Rik gene</td>
<td>0.038008176</td>
<td>2.09E-05</td>
</tr>
<tr>
<td>Acacb</td>
<td>acetyl-Coenzyme A carboxylase beta</td>
<td>1.07E-14</td>
<td>3.43E-05</td>
</tr>
<tr>
<td>Ank1</td>
<td>ankyrin 1, erythroid</td>
<td>6.76E-08</td>
<td>0.037369502</td>
</tr>
<tr>
<td>Ank3</td>
<td>ankyrin 3, epithelial</td>
<td>0.025089193</td>
<td>0.03170677</td>
</tr>
<tr>
<td>Ano2</td>
<td>anoctamin 2</td>
<td>5.40E-18</td>
<td>4.32E-07</td>
</tr>
<tr>
<td>Apool</td>
<td>apolipoprotein O-like</td>
<td>0.001118347</td>
<td>0.016145928</td>
</tr>
<tr>
<td>Atus2</td>
<td>autism susceptibility candidate 2</td>
<td>5.36E-16</td>
<td>0.000136714</td>
</tr>
<tr>
<td>C130026I21Rik</td>
<td>similar to SP140 nuclear body protein family member</td>
<td>0.021802715</td>
<td>0.000372029</td>
</tr>
<tr>
<td>Cdk5rap2</td>
<td>CDK5 regulatory subunit associated protein 2</td>
<td>1.78E-07</td>
<td>0.047926553</td>
</tr>
<tr>
<td>Chd9</td>
<td>chromodomain helicase DNA binding protein 9</td>
<td>0.048521886</td>
<td>0.002718363</td>
</tr>
<tr>
<td>Chl1</td>
<td>cell adhesion molecule with homology to L1CAM</td>
<td>4.67E-09</td>
<td>1.51E-11</td>
</tr>
<tr>
<td>Cpeb1</td>
<td>cytoplasmic polyadenylation element binding protein 1</td>
<td>0.042573761</td>
<td>0.040368177</td>
</tr>
<tr>
<td>Csda</td>
<td>cold shock domain protein A</td>
<td>1.06E-14</td>
<td>3.43E-05</td>
</tr>
<tr>
<td>Eif4a2</td>
<td>eukaryotic translation initiation factor 4A2</td>
<td>0.044916064</td>
<td>0.036176643</td>
</tr>
<tr>
<td>Fbxw4</td>
<td>F-box and WD-40 domain protein 4</td>
<td>0.033310937</td>
<td>0.000184038</td>
</tr>
<tr>
<td>Fgf12</td>
<td>fibroblast growth factor 12</td>
<td>0.039388541</td>
<td>0.000184038</td>
</tr>
<tr>
<td>Gpr19</td>
<td>G protein-coupled receptor 19</td>
<td>0.037900534</td>
<td>0.038098746</td>
</tr>
<tr>
<td>Ing4</td>
<td>inhibitor of growth family, member 4</td>
<td>0.02856405</td>
<td>0.02847679</td>
</tr>
<tr>
<td>Izumo1</td>
<td>izumo sperm-egg fusion 1</td>
<td>3.56E-16</td>
<td>5.68E-06</td>
</tr>
<tr>
<td>Kcnq1</td>
<td>potassium voltage-gated channel, subfamily Q, member 1</td>
<td>1.14E-05</td>
<td>0.04566623</td>
</tr>
<tr>
<td>Lage3</td>
<td>L antigen family, member 3</td>
<td>0.029330973</td>
<td>0.003353947</td>
</tr>
<tr>
<td>Lars2</td>
<td>leucyl-tRNA synthetase, mitochondrial</td>
<td>0.00103869</td>
<td>0.010982124</td>
</tr>
<tr>
<td>Lipc</td>
<td>lipase, hepatic</td>
<td>9.43E-06</td>
<td>1.17E-05</td>
</tr>
<tr>
<td>Litaf</td>
<td>LPS-induced TN factor</td>
<td>1.06E-05</td>
<td>0.015501719</td>
</tr>
<tr>
<td>Mbnl1</td>
<td>muscleblind-like 1 (Drosophila)</td>
<td>0.014790903</td>
<td>0.012125092</td>
</tr>
<tr>
<td>Mdga2</td>
<td>MAM domain containing glycosylphosphatidylinositol anchor 2</td>
<td>3.74E-11</td>
<td>0.017296099</td>
</tr>
<tr>
<td>Mef2c</td>
<td>myocyte enhancer factor 2C</td>
<td>0.008353399</td>
<td>0.002577155</td>
</tr>
<tr>
<td>Ntm</td>
<td>neurotrimin</td>
<td>0.011985522</td>
<td>0.044375612</td>
</tr>
</tbody>
</table>

Nature Neuroscience: doi:10.1038/nn.4315
<table>
<thead>
<tr>
<th>Gene</th>
<th>Description</th>
<th>Adj. p1</th>
<th>Adj. p2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rabgap1l</td>
<td>RAB GTPase activating protein 1-like</td>
<td>0.04469567</td>
<td>0.001785805</td>
</tr>
<tr>
<td>Rin2</td>
<td>similar to Ras and Rab interactor 2; Ras and Rab interactor 2</td>
<td>4.61E-09</td>
<td>2.11E-08</td>
</tr>
<tr>
<td>Sepsecs</td>
<td>Sep (O-phosphoserine) tRNA</td>
<td>6.53E-07</td>
<td>0.00153469</td>
</tr>
<tr>
<td>Slc35a2</td>
<td>solute carrier family 35 (UDP-galactose transporter), member A2</td>
<td>0.007163381</td>
<td>0.006114679</td>
</tr>
<tr>
<td>Sorbs2</td>
<td>sorbin and SH3 domain containing 2</td>
<td>0.003283078</td>
<td>0.000776979</td>
</tr>
<tr>
<td>Sorcs1</td>
<td>VPS10 domain receptor protein SORCS 1</td>
<td>0.001037955</td>
<td>0.009029728</td>
</tr>
<tr>
<td>Sp110</td>
<td>predicted gene 15753; Sp110 nuclear body protein</td>
<td>0.003851627</td>
<td>0.001195924</td>
</tr>
<tr>
<td>Syt4</td>
<td>synaptotagmin IV</td>
<td>0.013634086</td>
<td>0.037736076</td>
</tr>
<tr>
<td>Zfp658</td>
<td>cDNA sequence BC043301</td>
<td>0.013288823</td>
<td>0.012528656</td>
</tr>
<tr>
<td>Zfp71-rs1</td>
<td>zinc finger protein 71, related sequence</td>
<td>0.041686509</td>
<td>0.034138712</td>
</tr>
</tbody>
</table>

Supplementary Table 1. 39 common gene loci identified from pre & postnatal nicotine and postnatal nicotine treated group (adj.p<0.05)
<table>
<thead>
<tr>
<th>ID</th>
<th>Gene Name</th>
<th>FDR (pre&postnatal)</th>
<th>FDR (postnatal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2210408I21Rik</td>
<td>RIKEN cDNA 2210408I21 gene</td>
<td>8.93E-07</td>
<td>0.038155606</td>
</tr>
<tr>
<td>A530032D15Rik</td>
<td>RIKEN cDNA A530032D15Rik gene</td>
<td>0.038008176</td>
<td>2.09E-05</td>
</tr>
<tr>
<td>Acacb</td>
<td>acetyl-Coenzyme A carboxylase beta</td>
<td>1.07E-14</td>
<td>3.43E-05</td>
</tr>
<tr>
<td>Adam12</td>
<td>a disintegrin and metalloproteinase domain 12 (meltrin alpha)</td>
<td>6.76E-08</td>
<td>0.037369502</td>
</tr>
<tr>
<td>Aldh1b1</td>
<td>aldehyde dehydrogenase 1 family, member B1</td>
<td>0.065952838</td>
<td>0.08568177</td>
</tr>
<tr>
<td>Ank1</td>
<td>ankyrin 1, erythrocytic</td>
<td>6.76E-08</td>
<td>0.037369502</td>
</tr>
<tr>
<td>Ank3</td>
<td>ankyrin 3, node of Ranvier (ankyrin G)</td>
<td>0.025089193</td>
<td>0.0370677</td>
</tr>
<tr>
<td>Ano2</td>
<td>anoctamin 2</td>
<td>5.40E-18</td>
<td>4.32E-07</td>
</tr>
<tr>
<td>ApoO</td>
<td>apolipoprotein O-like</td>
<td>0.001118347</td>
<td>0.016145928</td>
</tr>
<tr>
<td>Atp5g1</td>
<td>ATP synthase, H+ transporting, mitochondrial F0 complex, subunit C1 (subunit 9)</td>
<td>0.079697042</td>
<td>0.079697042</td>
</tr>
<tr>
<td>Atm1l1</td>
<td>attractin-like 1</td>
<td>1.49E-05</td>
<td>0.080044326</td>
</tr>
<tr>
<td>AU015836</td>
<td>expressed sequence AU015836</td>
<td>0.050596023</td>
<td>0.01451473</td>
</tr>
<tr>
<td>Auts2</td>
<td>autism susceptibility candidate 2</td>
<td>5.36E-16</td>
<td>0.000136714</td>
</tr>
<tr>
<td>C130026I21Rik</td>
<td>RIKEN cDNA C130026I21 gene</td>
<td>0.021802715</td>
<td>0.000372029</td>
</tr>
<tr>
<td>Cdc73</td>
<td>Cell division control protein 73</td>
<td>0.073836761</td>
<td>0.08726114</td>
</tr>
<tr>
<td>Cdk5rap2</td>
<td>CDK5 regulatory subunit associated protein 2</td>
<td>1.78E-07</td>
<td>0.047926553</td>
</tr>
<tr>
<td>Chd9</td>
<td>chromodomain helicase DNA binding protein 9</td>
<td>0.048521886</td>
<td>0.002718363</td>
</tr>
<tr>
<td>Chl1</td>
<td>cell adhesion molecule with homology to L1CAM</td>
<td>4.67E-09</td>
<td>1.51E-11</td>
</tr>
<tr>
<td>Cpeb1</td>
<td>cytoplasmic polyadenylation element binding protein 1</td>
<td>0.042573761</td>
<td>0.040368177</td>
</tr>
<tr>
<td>Csda</td>
<td>cold shock domain protein A</td>
<td>1.06E-14</td>
<td>3.43E-05</td>
</tr>
<tr>
<td>D6Wsu163e</td>
<td>DNA segment, Chr 6, Wayne State University 163, expressed</td>
<td>0.071347961</td>
<td>0.04566623</td>
</tr>
<tr>
<td>Dlg2</td>
<td>discs, large homolog 2</td>
<td>0.057139925</td>
<td>0.049376395</td>
</tr>
<tr>
<td>Ef1a4a</td>
<td>eukaryotic translation initiation factor 4A2</td>
<td>0.044916064</td>
<td>0.036176643</td>
</tr>
<tr>
<td>Elavl2</td>
<td>ELAV (embryonic lethal, abnormal vision)-like 2 (Hu antigen B)</td>
<td>0.004157577</td>
<td>0.051964561</td>
</tr>
<tr>
<td>Fam19a3</td>
<td>family with sequence similarity 19 (chemokine (C-C motif)-like), member A3</td>
<td>0.08058543</td>
<td>0.002718363</td>
</tr>
<tr>
<td>Fastkd2</td>
<td>FAST kinase domains 2</td>
<td>0.055335149</td>
<td>0.077897659</td>
</tr>
<tr>
<td>Fbxw4</td>
<td>F-box and WD repeat domain containing 4</td>
<td>0.033310937</td>
<td>0.00184038</td>
</tr>
<tr>
<td>Fgf12</td>
<td>fibroblast growth factor 12</td>
<td>0.039388541</td>
<td>0.00184038</td>
</tr>
<tr>
<td>Gas8</td>
<td>growth arrest-specific 8</td>
<td>0.097730225</td>
<td>0.063671548</td>
</tr>
<tr>
<td>Glis3</td>
<td>GLIS family zinc finger 3</td>
<td>0.088618788</td>
<td>0.004125082</td>
</tr>
<tr>
<td>Gm13152</td>
<td>predicted gene 13152</td>
<td>0.037492077</td>
<td>0.062014274</td>
</tr>
<tr>
<td>Gpr19</td>
<td>G protein-coupled receptor 19</td>
<td>0.037900534</td>
<td>0.038098746</td>
</tr>
<tr>
<td>Hdac10</td>
<td>histone deacetylase 10</td>
<td>0.075936628</td>
<td>0.061014668</td>
</tr>
<tr>
<td>Ing4</td>
<td>inhibitor of growth family, member 4</td>
<td>0.02856405</td>
<td>0.02847679</td>
</tr>
<tr>
<td>Izumo1</td>
<td>izumo sperm-egg fusion 1</td>
<td>3.56E-16</td>
<td>5.68E-06</td>
</tr>
<tr>
<td>Kcnq1</td>
<td>potassium voltage-gated channel, KQT-like subfamily, member 1</td>
<td>1.14E-05</td>
<td>0.04566623</td>
</tr>
<tr>
<td>Lage3</td>
<td>L antigen family, member 3</td>
<td>0.029330973</td>
<td>0.003353947</td>
</tr>
<tr>
<td>Lars2</td>
<td>leucyl-tRNA synthetase 2, mitochondrial</td>
<td>0.00103869</td>
<td>0.010982124</td>
</tr>
<tr>
<td>Lipc</td>
<td>lipase, hepatic</td>
<td>9.43E-06</td>
<td>1.17E-05</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Description</td>
<td>Adj. p1</td>
<td>Adj. p2</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Litaf</td>
<td>lipopolysaccharide-induced TNF factor</td>
<td>1.06E-05</td>
<td>0.015501719</td>
</tr>
<tr>
<td>Lrrtm4</td>
<td>leucine rich repeat transmembrane neuronal 4</td>
<td>0.093643174</td>
<td>0.030674136</td>
</tr>
<tr>
<td>Macrod2</td>
<td>MACRO domain-containing protein 2</td>
<td>0.029330973</td>
<td>0.058068612</td>
</tr>
<tr>
<td>Mapk10</td>
<td>mitogen-activated protein kinase 10</td>
<td>0.0029967</td>
<td>0.08626202</td>
</tr>
<tr>
<td>Mbnl1</td>
<td>muscleblind-like 1 (Drosophila)</td>
<td>0.014790903</td>
<td>0.012125092</td>
</tr>
<tr>
<td>Mdga2</td>
<td>MAM domain containing glycosylphosphatidylinositol</td>
<td>3.74E-11</td>
<td>0.017296099</td>
</tr>
<tr>
<td>Mef2c</td>
<td>myocyte enhancer factor 2C</td>
<td>0.093643174</td>
<td>0.030674136</td>
</tr>
<tr>
<td>Ncoa1</td>
<td>nuclear receptor coactivator 1</td>
<td>0.058187811</td>
<td>4.76E-05</td>
</tr>
<tr>
<td>Ngdn</td>
<td>neuroguidin, EIF4E binding protein</td>
<td>0.092853631</td>
<td>0.077296869</td>
</tr>
<tr>
<td>Nmt1</td>
<td>Glycylpeptide N-tetradecanoyltransferase</td>
<td>0.019774984</td>
<td>0.093523028</td>
</tr>
<tr>
<td>Npfrr2</td>
<td>neuropeptide FF receptor 2</td>
<td>0.013729635</td>
<td>0.097638892</td>
</tr>
<tr>
<td>Ntm</td>
<td>neurotrimin</td>
<td>0.011985522</td>
<td>0.044375612</td>
</tr>
<tr>
<td>Pank1</td>
<td>pantothenate kinase 1</td>
<td>0.079488186</td>
<td>0.090827981</td>
</tr>
<tr>
<td>Pisd-ps1</td>
<td>phosphatidylserine decarboxylase, pseudogene 1</td>
<td>0.095486187</td>
<td>0.003564612</td>
</tr>
<tr>
<td>Ppi2</td>
<td>peptidylprolyl isomerase (cyclophilin)-like 2</td>
<td>0.034451154</td>
<td>0.087426372</td>
</tr>
<tr>
<td>Prickle2</td>
<td>prickle homolog 2 (Drosophila)</td>
<td>0.051082201</td>
<td>0.08177247</td>
</tr>
<tr>
<td>Psd3</td>
<td>pleckstrin and Sec7 domain containing 3</td>
<td>0.093039972</td>
<td>0.062014274</td>
</tr>
<tr>
<td>Rabgap1I</td>
<td>RAB GTPase activating protein 1-like</td>
<td>0.044469567</td>
<td>0.001785805</td>
</tr>
<tr>
<td>Rin2</td>
<td>Ras and Rab interactor 2</td>
<td>4.61E-09</td>
<td>2.11E-08</td>
</tr>
<tr>
<td>Sepsecs</td>
<td>Sep (O-phosphoserine) tRNA:Sec (selenocysteine) tRNA</td>
<td>6.53E-07</td>
<td>0.00153469</td>
</tr>
<tr>
<td>Sh3pxd2a</td>
<td>SH3 and PX domains 2A</td>
<td>0.07258674</td>
<td>0.070588595</td>
</tr>
<tr>
<td>Slt35a2</td>
<td>solute carrier family 35 (UDP-galactose transporter),</td>
<td>0.007163381</td>
<td>0.006114679</td>
</tr>
<tr>
<td>Sorbs2</td>
<td>sorbin and SH3 domain containing 2</td>
<td>0.003283078</td>
<td>0.000776979</td>
</tr>
<tr>
<td>Sorcs1</td>
<td>sortilin-related VPS10 domain containing receptor 1</td>
<td>0.001037955</td>
<td>0.009029728</td>
</tr>
<tr>
<td>Sp110</td>
<td>Sp110 nuclear body protein</td>
<td>0.003851627</td>
<td>0.001195924</td>
</tr>
<tr>
<td>Sumf2</td>
<td>sulfatase modifying factor 2</td>
<td>0.003851627</td>
<td>0.049635918</td>
</tr>
<tr>
<td>Syt4</td>
<td>synaptotagmin IV</td>
<td>0.013634086</td>
<td>0.037736076</td>
</tr>
<tr>
<td>Taz</td>
<td>tafazzin</td>
<td>0.09617633</td>
<td>0.003253765</td>
</tr>
<tr>
<td>Wdr34</td>
<td>WD repeat domain 34</td>
<td>0.058187811</td>
<td>0.040777754</td>
</tr>
<tr>
<td>Wwc2</td>
<td>WW and C2 domain containing 2</td>
<td>0.025783257</td>
<td>0.067486457</td>
</tr>
<tr>
<td>Zfp658</td>
<td>cDNA sequence BC043301</td>
<td>0.013288823</td>
<td>0.012528656</td>
</tr>
<tr>
<td>Zfp71-rs1</td>
<td>zinc finger protein 71, released sequence</td>
<td>0.041686509</td>
<td>0.034138712</td>
</tr>
<tr>
<td>Spag17-ps</td>
<td>sperm associated antigen 17 pseudogene</td>
<td>0.003680777</td>
<td>0.064997816</td>
</tr>
<tr>
<td>Rbfox2</td>
<td>RNA binding protein, fox-1 homolog</td>
<td>8.10E-05</td>
<td>0.086608937</td>
</tr>
</tbody>
</table>

Supplementary Table 2. 73 common gene loci identified from pre & postnatal nicotine and postnatal nicotine treated group (adj.p<0.05)

Nature Neuroscience: doi:10.1038/nn.4315
<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Gene Name</th>
<th>GO:0045202~synapse</th>
<th>GO:0044456~synapse part</th>
<th>GO:0014069~postsynaptic density</th>
<th>GO:0045211~postsynaptic membrane</th>
<th>GO:0030054~cell junction</th>
<th>GO:0044459~plasma membrane part</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ank3</td>
<td>Ankyrin 3</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Caly</td>
<td>Calcyon neuron-specific vesicular protein</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Camk2a</td>
<td>Calcium/calmodulin-dependent protein kinase II alpha</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chrm1</td>
<td>Cholinergic receptor, muscarinic 1</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Cldn23</td>
<td>Claudin 23</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Cog4</td>
<td>Component of oligomeric golgi complex 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cpeb1</td>
<td>Cytoplasmic polyadenylation element binding protein 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Csla</td>
<td>Cold-shock domain protein A</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Dlg2</td>
<td>Discs, large homolog 2 (Drosophila)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dlgap2</td>
<td>Discs, large (Drosophila) homolog-associated protein 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dnmp2</td>
<td>Dynamin binding protein</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Ephb3</td>
<td>Eph receptor B3</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Gabra1</td>
<td>Gamma-aminobutyric acid (GABA) A receptor, alpha 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gria3</td>
<td>Glutamate receptor, ionotropic, AMPA 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gria1</td>
<td>Glutamate receptor, ionotropic, N-methyl-D-aspartate 1 (Zeta 1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kcnq1</td>
<td>Potassium voltage-gated channel, KQT-like subfamily, member 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kctd16</td>
<td>Potassium channel tetramerization domain containing 16</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Litaf</td>
<td>Lipopolysaccharide-induced TNF factor</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Lrrk2</td>
<td>Leucine-rich repeat kinase 2</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Magi2</td>
<td>Membrane-associated guanylate kinase, WW and PDZ domain containing 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Npfr2</td>
<td>Neuropeptide FF receptor 2</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Pht1</td>
<td>Palmitoyl-protein thioresterase 1</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Prickle2</td>
<td>Prickle homolog 2 (Drosophila)</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Pad3</td>
<td>Pleckstrin and Sec7 domain containing 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rab3c</td>
<td>Member Ras oncogene family</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Rims2</td>
<td>Regulating synaptic membrane exocytosis 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Shroom4</td>
<td>Shroom family member 4</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Slc4a10</td>
<td>Solute carrier family 4, sodium bicarbonate transporter, member 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speed2</td>
<td>Sprouty-related, EVH1 domain containing 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Syt4</td>
<td>Synaptotagmin IV</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Syt2</td>
<td>Synaptotagmin-like 2</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Tnfaip1</td>
<td>Tumor necrosis factor, alpha-induced protein 1 (endothelial)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vwf</td>
<td>Von Willebrand factor 2</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Xirp2</td>
<td>Xin actin-binding repeat containing 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>

Supplementary Table 3. Significant Gene Ontology Groups for H3MeK4 sequencing data of tissue from pre- and postnatal nicotine treated subjects.
<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Gene Name</th>
<th>Gene Ontology Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alk</td>
<td>anaplastic lymphoma receptor tyrosine kinase</td>
<td>GO:0045202~synapse</td>
</tr>
<tr>
<td>Ank1b</td>
<td>ankyrin repeat and sterile alpha motif domain containing 1B</td>
<td>GO:0044456~synapse part</td>
</tr>
<tr>
<td>Arhgef2</td>
<td>ADP-ribosylation factor guanine nucleotide-exchange factor 2</td>
<td>GO:0014069~postsynaptic density</td>
</tr>
<tr>
<td>Cacnb4</td>
<td>calcium channel, voltage-dependent, beta 4 subunit</td>
<td>GO:0045211~postsynaptic membrane part</td>
</tr>
<tr>
<td>Cdh13</td>
<td>cadherin 13 (T-cadherin)</td>
<td>GO:0030054~cell junction</td>
</tr>
<tr>
<td>Cdh4</td>
<td>Cadherin 4</td>
<td>X X X X X X</td>
</tr>
<tr>
<td>Chnna3</td>
<td>cholinergic receptor, nicotinic, alpha 3 (neuronal)</td>
<td>X X X X X X</td>
</tr>
<tr>
<td>Cpeb1</td>
<td>cytoplasmic polyadenylation element binding protein 1</td>
<td>X X X X X X</td>
</tr>
<tr>
<td>Csa</td>
<td>Cold-shock domain protein A</td>
<td>X X X X X X</td>
</tr>
<tr>
<td>Ctnna1</td>
<td>catenin (cadherin-associated protein), alpha 1</td>
<td>X X X X X X</td>
</tr>
<tr>
<td>Cybrd1</td>
<td>cytochrome b reductase 1</td>
<td>X X X X X X</td>
</tr>
<tr>
<td>Dlg2</td>
<td>discs, large homolog 2 (Drosophila)</td>
<td>X X X X X X</td>
</tr>
<tr>
<td>Dsc1</td>
<td>desmocollin 1</td>
<td>X X X X X X</td>
</tr>
<tr>
<td>Fblim1</td>
<td>flamin binding LIM protein 1</td>
<td>X X X X X X</td>
</tr>
<tr>
<td>Fmn1</td>
<td>formin 1</td>
<td>X X X X X X</td>
</tr>
<tr>
<td>Fn1</td>
<td>fibronectin 1</td>
<td>X X X X X X</td>
</tr>
<tr>
<td>Grid2ip</td>
<td>glutamate receptor, ionotropic, delta 2 (Grid2) interacting protein</td>
<td>X X X X X X</td>
</tr>
<tr>
<td>Grin2c</td>
<td>glutamate receptor, ionotropic, N-methyl D-aspartate 2C</td>
<td>X X X X X X</td>
</tr>
<tr>
<td>Grin2d</td>
<td>glutamate receptor, ionotropic, N-methyl D-aspartate 2D,</td>
<td>X X X X X X</td>
</tr>
<tr>
<td>Grip1</td>
<td>glutamate receptor interacting protein 1</td>
<td>X X X X X X</td>
</tr>
<tr>
<td>Kcnq1</td>
<td>potassium voltage-gated channel, KQT-like subfamily, member 1</td>
<td>X X X X X X</td>
</tr>
<tr>
<td>Lmo7</td>
<td>LIM domain only 7</td>
<td>X X X X X X</td>
</tr>
<tr>
<td>Mag1f</td>
<td>membrane associated guanylate kinase, WW and PDZ domain containing 1</td>
<td>X X X X X X</td>
</tr>
<tr>
<td>Mmp16</td>
<td>matrix metalloproteinase 16 (membrane-inserted)</td>
<td>X X X X X X</td>
</tr>
<tr>
<td>M3</td>
<td>metallothionein 3</td>
<td>X X X X X X</td>
</tr>
<tr>
<td>Npfr2</td>
<td>neuropeptide FF receptor 2</td>
<td>X X X X X X</td>
</tr>
<tr>
<td>Odz3</td>
<td>Oz/ten-m homolog 3 (Drosophila)</td>
<td>X X X X X X</td>
</tr>
<tr>
<td>Prickle2</td>
<td>prickle homolog 2 (Drosophila)</td>
<td>X X X X X X</td>
</tr>
<tr>
<td>Pkd3</td>
<td>pleckstrin and Sec7 domain containing 3</td>
<td>X X X X X X</td>
</tr>
<tr>
<td>Pvr4</td>
<td>poliovirus receptor-related 4</td>
<td>X X X X X X</td>
</tr>
<tr>
<td>Rimbp2</td>
<td>Rims binding protein 2</td>
<td>X X X X X X</td>
</tr>
<tr>
<td>Scn1a</td>
<td>sodium channel, voltage-gated, type I, alpha subunit</td>
<td>X X X X X X</td>
</tr>
<tr>
<td>Shank2</td>
<td>SH3 and multiple ankyrin repeat domains 2</td>
<td>X X X X X X</td>
</tr>
<tr>
<td>Sloc2a3</td>
<td>solute carrier family 2 (facilitated glucose transporter), member 3</td>
<td>X X X X X X</td>
</tr>
<tr>
<td>Sloc4a4</td>
<td>solute carrier family 4 (sodium bicarbonate cotransporter), member 4</td>
<td>X X X X X X</td>
</tr>
<tr>
<td>Sorts3</td>
<td>sorbin and SH3 domain containing 3</td>
<td>X X X X X X</td>
</tr>
<tr>
<td>Spred2</td>
<td>sprouty-related, EVH1 domain containing 2</td>
<td>X X X X X X</td>
</tr>
<tr>
<td>Syt4</td>
<td>synaptotagmin IV</td>
<td>X X X X X X</td>
</tr>
<tr>
<td>Utm</td>
<td>Utrophin</td>
<td>X X X X X X</td>
</tr>
<tr>
<td>Vmn1r81</td>
<td>vomeronasal 1 receptor 81</td>
<td>X X X X X X</td>
</tr>
</tbody>
</table>

Supplementary Table 4. Significant Gene Ontology Groups for H3MeK4 sequencing data of tissue from postnatal-only nicotine treated subjects.

Nature Neuroscience: doi:10.1038/nn.4315
ChIP-PCR primers (H3K4me3)

<table>
<thead>
<tr>
<th>Target</th>
<th>Forward</th>
<th>Reverse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acacb</td>
<td>5'-ggaaggtgactcatgcctgt-3'</td>
<td>5'-gagcagtcggtgtcttac-3'</td>
</tr>
<tr>
<td>Ank1</td>
<td>5'-ctctggtggccattttctaa-3'</td>
<td>5'-cccgctgcagtaagttctc-3'</td>
</tr>
<tr>
<td>Ank3</td>
<td>5'-cctcagttggattcgag-3'</td>
<td>5'-aacacttggggcagaacatc-3'</td>
</tr>
<tr>
<td>Ano2</td>
<td>5'-caggctgctcctaggtat-3'</td>
<td>5'-gaatggaatgagccaggtca-3'</td>
</tr>
<tr>
<td>Apool</td>
<td>5'-ttacctccggtgtaactctg-3'</td>
<td>5'-ttttgtctgttggccaca-3'</td>
</tr>
<tr>
<td>Auts2</td>
<td>5'-ccagtattctctggtttt-3'</td>
<td>5'-gatctaaacggcagaggtg-3'</td>
</tr>
<tr>
<td>Cdk5rap2</td>
<td>5'-ataagccaggtgtccagtaa-3'</td>
<td>5'-ccacccccattttctacgtc-3'</td>
</tr>
<tr>
<td>Chd9</td>
<td>5'-gaacaaatgtacgccctcgt-3'</td>
<td>5'-atgacatcacaacctctctg-3'</td>
</tr>
<tr>
<td>Chl1</td>
<td>5'-ccttgcctgaagagttgctt-3'</td>
<td>5'-cctgaatggtagccgaacat-3'</td>
</tr>
<tr>
<td>Cpeb1</td>
<td>5'-gcttggatacctgcctctg-3'</td>
<td>5'-cagaggtggggaaaagcat-3'</td>
</tr>
<tr>
<td>Csda</td>
<td>5'-tccagatggccgagttcag-3'</td>
<td>5'-tagccctctttggtccgctc-3'</td>
</tr>
<tr>
<td>Eif4a2</td>
<td>5'-gactccagatgttgggaga -3'</td>
<td>5'-ccatctcgcagacagaaccta-3'</td>
</tr>
<tr>
<td>Fbxw4</td>
<td>5'-taacctgcggagccatccttt-3'</td>
<td>5'-cggctccactcactagaaa-3'</td>
</tr>
<tr>
<td>Fgf12</td>
<td>5'-tccagctttctgtgctgt-3'</td>
<td>5'-gtacagagctgctgttac-3'</td>
</tr>
<tr>
<td>Gpr19</td>
<td>5'-agccagagggggagag-3'ca</td>
<td>5'-ttgctgtgctctgtgttatc-3'</td>
</tr>
<tr>
<td>Ing4</td>
<td>5'-ctctgctagtagctgctgt-3'</td>
<td>5'-aatcactcccaagagccatc-3'</td>
</tr>
<tr>
<td>Izumo1</td>
<td>5'-acgtggaatgctccactct-3'</td>
<td>5'-cccactcgcagaaaccta-3'</td>
</tr>
<tr>
<td>Kcnq1</td>
<td>5'-ccttcacccctgctgtttt-3'</td>
<td>5'-aaagcggagagaggtgtaa-3'</td>
</tr>
<tr>
<td>Lage3</td>
<td>5'-aatccctggagagtccctctg-3'</td>
<td>5'-tttgctctccctcttcaac-3'</td>
</tr>
<tr>
<td>Lars2</td>
<td>5'-gctgtattggtggccacatc-3'</td>
<td>5'-aggcctctgtcaggctc-3'</td>
</tr>
<tr>
<td>Lipc</td>
<td>5'-agagcggcggaggtaatcgt-3'</td>
<td>5'-cttgagccccagaagttcag-3'</td>
</tr>
<tr>
<td>Litaf</td>
<td>5'-gcagatgtggtgtacgttt-3'</td>
<td>5'-agatggctctgctgttgct-3'</td>
</tr>
<tr>
<td>Mbnl1</td>
<td>5'-accaacagtccatgcgaaatc-3'</td>
<td>5'-tcagccctgtgctagtaa-3'</td>
</tr>
<tr>
<td>Mdga2</td>
<td>5'-attacgagggctggaaggt-3'</td>
<td>5'-aataagccagcagacagataa-3'</td>
</tr>
<tr>
<td>Mef2c</td>
<td>5'-acacagccacactgtctcct-3'</td>
<td>5'-ggcttgaaagaagaggctc-3'</td>
</tr>
<tr>
<td>Rabgap1</td>
<td>5'-ctgcgagggagattctttaca-3'</td>
<td>5'-aggaggcagagctcacttc-3'</td>
</tr>
<tr>
<td>Rin2</td>
<td>5'-ccatgtattgccacccaaag-3'</td>
<td>5'-ttttttctcttggtctttct-3'</td>
</tr>
<tr>
<td>Sepsecs</td>
<td>5'-tggtgactattcagggcaac-3'</td>
<td>5'-gtctgttttggagatgtgg-3'</td>
</tr>
<tr>
<td>Sla35a</td>
<td>5'-ggacagcagggacacattaa-3'</td>
<td>5'-attctcaaatgtggcttc-3'</td>
</tr>
<tr>
<td>Sorbs2</td>
<td>5'-gcgtgttctacatgtcactct-3'</td>
<td>5'-ttctcttcgaaagctcact-3'</td>
</tr>
<tr>
<td>Sorcs1</td>
<td>5'-ataacagcagcactactctc-3'</td>
<td>5'-cgtgtgctcaggtctcctc-3'</td>
</tr>
<tr>
<td>Sp110</td>
<td>5'-ttgctctgtctccctactc-3'</td>
<td>5'-gtacacgagggtgatgtgtg-3'</td>
</tr>
<tr>
<td>Syt4</td>
<td>5'-tgcttttgccccctgtttcctcttc-3a</td>
<td>5'-gcggctttactcctctactc-3'</td>
</tr>
<tr>
<td>Zfp658</td>
<td>5'-ggccatgacagctcctaa-3'g</td>
<td>5'-atagacggcgttagagaccac-3'</td>
</tr>
<tr>
<td>Zfp71-rs1</td>
<td>5'-ccgaaactctttggttctt-3'</td>
<td>5'-atccaaacccagagacatc-3'</td>
</tr>
</tbody>
</table>

ChIP-PCR primers (Control GAPDH H3K4me3)

<table>
<thead>
<tr>
<th>Target</th>
<th>Forward</th>
<th>Reverse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gapdh (1)</td>
<td>5'-cccctgactctacgagttaaag-3'</td>
<td>5'-ttcattacctccgaagacatc-3'</td>
</tr>
<tr>
<td>Gapdh (2)</td>
<td>5'-acatcaccacccctcactcatc-3'</td>
<td>5'-tcccttagttcaggagact-3'</td>
</tr>
</tbody>
</table>
ChIP-PCR primers (Acetylation)

<table>
<thead>
<tr>
<th>Target</th>
<th>Forward</th>
<th>Reverse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mef2c</td>
<td>5'-cacgcatctcaccgcttgacg-3'</td>
<td>5'-caccagtgcctttctgtctcc-3'</td>
</tr>
</tbody>
</table>

qRT-PCR primer list

<table>
<thead>
<tr>
<th>Target</th>
<th>Forward</th>
<th>Reverse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ash2L</td>
<td>5'-ccgaaagtgggtgatgcaact-3'</td>
<td>5'-gtccaggtaacccattttgt-3'</td>
</tr>
<tr>
<td>Cep192</td>
<td>5'-aaggtgatctttcaacacagc-3'</td>
<td>5'-cgtgatcagatgctgctgt-3'</td>
</tr>
<tr>
<td>Cflar</td>
<td>5'-cagaggcaagataacacaggg-3'</td>
<td>5'-tcgaggttgctgttcgggtt-3'</td>
</tr>
<tr>
<td>Chsy3</td>
<td>5'-agttctgtctctactcaggc-3'</td>
<td>5'-ccggacaaactgggacct-3'</td>
</tr>
<tr>
<td>Cinnal1</td>
<td>5'-ttttgctggtaatcgtttta-3'</td>
<td>5'-cctgtcccacacgctgta-3'</td>
</tr>
<tr>
<td>Duox1</td>
<td>5'-aaaaacaccaggaagcattgt-3'</td>
<td>5'-cgacatggttctcgggattg-3'</td>
</tr>
<tr>
<td>Gmeb1</td>
<td>5'-ggaacccggaagacactaaac-3'</td>
<td>5'-gtgccacactgcgtgcatt-3'</td>
</tr>
<tr>
<td>Nrp</td>
<td>5'-tggagccgctgtaattctg-3'</td>
<td>5'-cttgacaatgggaacct-3'</td>
</tr>
<tr>
<td>Ntrk2</td>
<td>5'-ctttgagctctgtcctgtc-3'</td>
<td>5'-acccatcctttctgggacct-3'</td>
</tr>
<tr>
<td>Sucla2</td>
<td>5'-acctctttgcgtcagatata-3'</td>
<td>5'-ccctgtgcctctgtcttca-3'</td>
</tr>
<tr>
<td>Tmem107</td>
<td>5'-atctccacccccgggagaatag-3'</td>
<td>5'-aggggtccttttcgcccc-3'</td>
</tr>
<tr>
<td>Unc13b</td>
<td>5'-ccgagaaagtaagagacaa-3'</td>
<td>5'-cgtcctttgctctgcaacct-3'</td>
</tr>
<tr>
<td>Zcchc11</td>
<td>5'-aaattcagccagctgtttctc-3'</td>
<td>5'-acccatcactctctcagtt-3'</td>
</tr>
<tr>
<td>Zfp597</td>
<td>5'-agccagagaacccgatgcaag-3'</td>
<td>5'-tcagactgttggaacacaggt-3'</td>
</tr>
<tr>
<td>Zfp91</td>
<td>5'-gacctcttatctctgcccctc-3'</td>
<td>5'-aaggagccgtctggaccta-3'</td>
</tr>
</tbody>
</table>

pAAV-shRNA cloning primer

<table>
<thead>
<tr>
<th>Target</th>
<th>Forward</th>
<th>Reverse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mef2c</td>
<td>5'-atacggatcgacagctcag-3'</td>
<td>5'-aaccagcacacatacttggct-3'</td>
</tr>
<tr>
<td>Gapdh</td>
<td>5'-aggtcgggttgtgaacccggtg-3'</td>
<td>5'-ttagacacatgtgagttgg-3'</td>
</tr>
</tbody>
</table>

Supplementary Table 5. Primer list used in ChIP-PCR, qRT-PCR, and cloning