Corresponding Author: Yutaka Yoshida and Phillip G. Popovich
Manuscript Number: NN-BC54937A
Manuscript Type: Brief Communication

Main Figures: 3
Supplementary Figures: 9
Supplementary Tables: 1
Supplementary Videos: 0

Reporting Checklist for Nature Neuroscience

This checklist is used to ensure good reporting standards and to improve the reproducibility of published results. For more information, please read Reporting Life Sciences Research.

Please note that in the event of publication, it is mandatory that authors include all relevant methodological and statistical information in the manuscript.

Statistics reporting, by figure

- Please specify the following information for each panel reporting quantitative data, and where each item is reported (section, e.g. Results, & paragraph number).
- Each figure legend should ideally contain an exact sample size (n) for each experimental group/condition, where n is an exact number and not a range, a clear definition of how n is defined (for example x cells from x slices from x animals from x litters, collected over x days), a description of the statistical test used, the results of the tests, any descriptive statistics and clearly defined error bars if applicable.
- For any experiments using custom statistics, please indicate the test used and stats obtained for each experiment.
- Each figure legend should include a statement of how many times the experiment shown was replicated in the lab; the details of sample collection should be sufficiently clear so that the replicability of the experiment is obvious to the reader.
- For experiments reported in the text but not in the figures, please use the paragraph number instead of the figure number.

Note: Mean and standard deviation are not appropriate on small samples, and plotting independent data points is usually more informative. When technical replicates are reported, error and significance measures reflect the experimental variability and not the variability of the biological process; it is misleading not to state this clearly.

<table>
<thead>
<tr>
<th>TEST USED</th>
<th>n</th>
<th>DESCRIPTIVE STATS (AVERAGE, VARIANCE)</th>
<th>P VALUE</th>
<th>DEGREES OF FREEDOM & F/T/Z/ETC VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHICH TEST</td>
<td>SECTION & PARAGRAPH #</td>
<td>EXACT VALUE</td>
<td>DEFINED?</td>
<td>REPORTED?</td>
</tr>
<tr>
<td>one-way ANOVA</td>
<td>Methods para 8</td>
<td>error bars are mean +/- SEM</td>
<td>Fig. legend</td>
<td>p = 0.044</td>
</tr>
<tr>
<td>unpaired t-test</td>
<td>Results para 6</td>
<td>error bars are mean +/- SEM</td>
<td>Results para 6</td>
<td>p = 0.0006</td>
</tr>
<tr>
<td>FIGURE NUMBER</td>
<td>WHICH TEST?</td>
<td>n</td>
<td>DEFINED?</td>
<td>DESCRIMENT STATS (AVERAGE, VARIANCE)</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
<td>---</td>
<td>----------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>Fig. 1m T1-3</td>
<td>One way ANOVA followed by Tukey-test</td>
<td>n = 4</td>
<td>mice</td>
<td>Methods and Fig. legend</td>
</tr>
<tr>
<td>Fig. 1m T4-9</td>
<td>One way ANOVA followed by Tukey-test</td>
<td>n = 5</td>
<td>mice</td>
<td>Methods and Fig. legend</td>
</tr>
<tr>
<td>Fig. 1m T10-13</td>
<td>Kruskal-Wallis test followed by Dunn's multiple comparisons test</td>
<td>n = 4</td>
<td>mice</td>
<td>Methods and Fig. legend</td>
</tr>
<tr>
<td>Fig. 1m L1-6</td>
<td>Kruskal-Wallis test followed by Dunn's multiple comparisons test</td>
<td>n = 5</td>
<td>mice</td>
<td>Methods and Fig. legend</td>
</tr>
<tr>
<td>Fig. 1m S1-2</td>
<td>One way ANOVA followed by Tukey-test</td>
<td>n = 5</td>
<td>mice</td>
<td>Methods and Fig. legend</td>
</tr>
<tr>
<td>Fig. 1m T1-3</td>
<td>One way ANOVA followed by Tukey-test</td>
<td>n = 4</td>
<td>mice</td>
<td>Methods and Fig. legend</td>
</tr>
<tr>
<td>Fig. 1m T4-9</td>
<td>One way ANOVA followed by Tukey-test</td>
<td>n = 5</td>
<td>mice</td>
<td>Methods and Fig. legend</td>
</tr>
</tbody>
</table>

Nature Neuroscience: doi:10.1038/nn.4289
<table>
<thead>
<tr>
<th>Fig. 1n T10-13</th>
<th>Kruskal-Wallis test followed by Dunn’s multiple comparisons test</th>
<th>Methods and Fig. legend</th>
<th>n = 4</th>
<th>mice</th>
<th>Methods and Fig. legend</th>
<th>error bars are mean +/- SEM</th>
<th>Methods and Fig. legend</th>
<th>Control vs T3SCI, p = 0.1158; Control vs T9SCI, p = > 0.9999; T3SCI vs T9SCI, p = 0.0558</th>
<th>not described</th>
<th>H = 6.63</th>
<th>not described</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 1n L1-6</td>
<td>Kruskal-Wallis test followed by Dunn’s multiple comparisons test</td>
<td>Methods and Fig. legend</td>
<td>n = 5</td>
<td>mice</td>
<td>Methods and Fig. legend</td>
<td>error bars are mean +/- SEM</td>
<td>Methods and Fig. legend</td>
<td>Control vs T3SCI, p = 0.1017; Control vs T9SCI, p = > 0.9999; T3SCI vs T9SCI, p = 0.0279</td>
<td>not described</td>
<td>H = 7.662</td>
<td>not described</td>
</tr>
<tr>
<td>Fig. 1n S1-2</td>
<td>Kruskal-Wallis test followed by Dunn’s multiple comparisons test</td>
<td>Methods and Fig. legend</td>
<td>n = 5</td>
<td>mice</td>
<td>Methods and Fig. legend</td>
<td>error bars are mean +/- SEM</td>
<td>Methods and Fig. legend</td>
<td>Control vs T3SCI, p = 0.1017; Control vs T9SCI, p = > 0.9999; T3SCI vs T9SCI, p = 0.0279</td>
<td>not described</td>
<td>H = 6.211</td>
<td>not described</td>
</tr>
<tr>
<td>Fig. 1o T1-3</td>
<td>One way ANOVA followed by Tukey-test</td>
<td>Methods and Fig. legend</td>
<td>n = 4</td>
<td>mice</td>
<td>Methods and Fig. legend</td>
<td>error bars are mean +/- SEM</td>
<td>Methods and Fig. legend</td>
<td>Control vs T3SCI, p = 0.9434; control vs T9SCI, p = 0.6899; T3SCI vs T9SCI, p = 0.4978</td>
<td>not described</td>
<td>F (2, 9) = 0.3119</td>
<td>not described</td>
</tr>
<tr>
<td>Fig. 1o T4-9</td>
<td>One way ANOVA followed by Tukey-test</td>
<td>Methods and Fig. legend</td>
<td>n = 5</td>
<td>mice</td>
<td>Methods and Fig. legend</td>
<td>error bars are mean +/- SEM</td>
<td>Methods and Fig. legend</td>
<td>control vs T3SCI, p = 0.2554; control vs T9SCI, p = 0.9905; T3SCI vs T9SCI, p = 0.2408</td>
<td>not described</td>
<td>F (2, 12) = 0.7159</td>
<td>not described</td>
</tr>
<tr>
<td>Fig. 1o T10-13</td>
<td>One way ANOVA followed by Tukey-test</td>
<td>Methods and Fig. legend</td>
<td>n = 4</td>
<td>mice</td>
<td>Methods and Fig. legend</td>
<td>error bars are mean +/- SEM</td>
<td>Methods and Fig. legend</td>
<td>F (2, 9) = 1.919</td>
<td>not described</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fig. 1o L1-6</td>
<td>Kruskal-Wallis test followed by Dunn’s multiple comparisons test</td>
<td>Methods and Fig. legend</td>
<td>n = 5</td>
<td>mice</td>
<td>Methods and Fig. legend</td>
<td>error bars are mean +/- SEM</td>
<td>Methods and Fig. legend</td>
<td>Control vs T3SCI, p = 0.0194; Control vs T9SCI, p = > 0.9999; T3SCI vs T9SCI, p = 0.0194</td>
<td>not described</td>
<td>H = 9.882</td>
<td>not described</td>
</tr>
<tr>
<td>Fig. 1o S1-2</td>
<td>Kruskal-Wallis test followed by Dunn’s multiple comparisons test</td>
<td>Methods and Fig. legend</td>
<td>n = 5</td>
<td>mice</td>
<td>Methods and Fig. legend</td>
<td>error bars are mean +/- SEM</td>
<td>Methods and Fig. legend</td>
<td>Control vs T3SCI, p = 0.0043; Control vs T9SCI, p = > 0.9999; T3SCI vs T9SCI, p = 0.0157</td>
<td>not described</td>
<td>H = 12.09</td>
<td>not described</td>
</tr>
<tr>
<td>Fig.</td>
<td>Method and Fig. legend</td>
<td>Control, n = 4; T9 SCI, n = 4; T3 SCI, n = 4 mice</td>
<td>Methods and Fig. legend</td>
<td>error bars are mean +/- SEM</td>
<td>Methods and Fig. legend</td>
<td>control vs T3SCI, p = 0.0315; control vs T9SCI, p = 0.9584; T3SCI vs T9SCI, p = 0.0487</td>
<td>control vs WT +T3 SCI, p = 0.0409; Control vs WT +hM4Di+T3 SCI, p = 0.1956; Control vs vGlut2-Cre +hM4Di+T3 SCI, p = 0.8385; Control vs Chat-Cre +hM4Di+T3 SCI, p = 0.0353; WT +hM4Di+T3 SCI vs WT +vGlut2-Cre, p = 0.0248; WT +hM4Di+T3 SCI vs Chat-Cre+hM4Di +T3 SCI, p = 0.0793; vGlut2-Cre +hM4Di+T3 SCI vs Chat-Cre+hM4Di +T3 SCI, p = 0.2811</td>
<td>Fig. legend</td>
<td>F(2, 9) = 5.833</td>
<td>not described</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-------------------</td>
<td>---------------------------------</td>
<td>------------------------</td>
<td>----------------------------</td>
<td>------------------------</td>
<td>---</td>
<td>--</td>
<td>------------------------</td>
<td>------------------------</td>
<td>------------------------</td>
<td></td>
</tr>
<tr>
<td>2m</td>
<td>Fig. 2m</td>
<td>One way ANOVA followed by Tukey-test</td>
<td>Control, n = 4; T9 SCI, n = 4; T3 SCI, n = 4 mice</td>
<td>Methods and Fig. legend</td>
<td>error bars are mean +/- SEM</td>
<td>Methods and Fig. legend</td>
<td>control vs T3SCI, p = 0.0315; control vs T9SCI, p = 0.9584; T3SCI vs T9SCI, p = 0.0487</td>
<td>Fig. legend</td>
<td>F(2, 9) = 5.833</td>
<td>not described</td>
<td></td>
</tr>
<tr>
<td>3c</td>
<td>Fig. 3c</td>
<td>One way ANOVA followed by Tukey-test</td>
<td>WT control, n = 9; WT + T3 SCI, n = 8; WT + hM4Di + T3 SCI, n = 8; Vglut2-Cre + hM4Di + T3 SCI, n = 8; Chat-Cre + hM4Di + T3 SCI, n = 8 mice</td>
<td>Methods and Fig. legend</td>
<td>error bars are mean +/- SEM</td>
<td>Methods and Fig. legend</td>
<td>control vs WT +T3 SCI, p = 0.0409; Control vs WT +hM4Di+T3 SCI, p = 0.1956; Control vs vGlut2-Cre +hM4Di+T3 SCI, p = 0.8385; Control vs Chat-Cre +hM4Di+T3 SCI, p = 0.0353; WT +hM4Di+T3 SCI vs WT +vGlut2-Cre, p = 0.0248; WT +hM4Di+T3 SCI vs Chat-Cre+hM4Di +T3 SCI, p = 0.0793; vGlut2-Cre +hM4Di+T3 SCI vs Chat-Cre+hM4Di +T3 SCI, p = 0.2811</td>
<td>Fig. legend</td>
<td>F (4, 36) = 4.994</td>
<td>not described</td>
<td></td>
</tr>
<tr>
<td>Fig.</td>
<td>Methods and Fig. legend</td>
<td>Methods and Fig. legend</td>
<td>Methods and Fig. legend</td>
<td>Methods and Fig. legend</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-------------------------</td>
<td>-------------------------</td>
<td>-------------------------</td>
<td>-------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3d</td>
<td>One way ANOVA followed by Tukey-test</td>
<td>WT control, n = 9; WT + T3 SCI, n = 8; WT + hM4Di + T3 SCI, n = 7; Vglut2-Cre + hM4Di + T3 SCI, n = 7; Chat-Cre + hM4Di + T3 SCI, n = 5</td>
<td>error bars are mean +/- SEM</td>
<td>Control vs WT + T3 SCI, p = 0.0001; Control vs WT + hM4Di+T3 SCI, p = 0.0084; Control vs vGlut2-Cre + hM4Di+T3 SCI, p = 0.8238; Control vs Chat-Cre + hM4Di+T3 SCI, p = 0.0103; WT + T3 SCI vs WT + hM4Di+T3 SCI, p = 0.6674; WT + T3 SCI vs vGlut2-Cre + hM4Di+T3 SCI, p = 0.0094; WT + T3 SCI vs Chat-Cre + hM4Di+T3 SCI, p = 0.8762; WT + hM4Di+T3 SCI vs vGlut2-Cre+hM4Di + T3 SCI, p = 0.1967; WT + hM4Di+T3 SCI vs Chat-Cre+hM4Di + T3 SCI, p = 0.9989; vGlut2-Cre + hM4Di+T3 SCI vs Chat-Cre+hM4Di + T3 SCI, p = 0.1714</td>
<td>Fig. legend</td>
<td>F(4, 31) = 8.787</td>
<td>not described</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
WT control, n = 9; WT + T3 SCI, n = 8; WT + hM4Di + T3 SCI, n = 7; Vglut2-Cre + hM4Di + T3 SCI, n = 7; Chat-Cre + hM4Di + T3 SCI, n = 5

Methods and Fig. legend

error bars are mean +/- SEM

Methods and Fig. legend

F(4,31) = 7.062

Control vs WT +T3 SCI, p = < 0.0001; Control vs WT +hM4Di+T3 SCI, p = 0.0005; Control vs vGlut2-Cre +hM4Di+T3 SCI, p = 0.2483; Control vs Chat-Cre +hM4Di+T3 SCI, p = 0.0035; WT +T3 SCI vs WT +hM4Di+T3 SCI, p = 0.9921; WT +T3 SCI vs vGlut2-Cre +hM4Di+T3 SCI, p = 0.0422; WT +T3 SCI vs Chat-Cre +hM4Di+T3 SCI, p = 0.9604; WT +hM4Di+T3 SCI vs vGlut2-Cre+hM4Di +T3 SCI, p = 0.1284; WT +hM4Di+T3 SCI vs Chat-Cre+hM4Di +T3 SCI, p = 0.9987; vGlut2-Cre +hM4Di+T3 SCI vs Chat-Cre+hM4Di +T3 SCI, p = 0.3053

Nature Neuroscience: doi:10.1038/nn.4289
<table>
<thead>
<tr>
<th>Methods and Fig. legend</th>
<th>One way ANOVA followed by Tukey-test</th>
<th>Methods and Fig. legend</th>
<th>Methods and Fig. legend</th>
<th>Methods and Fig. legend</th>
<th>F(4, 31) = 11.502</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT control, n = 9; WT + T3 SCI, n = 8; WT + hM4Di + T3 SCI, n = 7; Vglut2-Cre + hM4Di + T3 SCI, n = 7; Chat-Cre + hM4Di + T3 SCI, n = 5</td>
<td>not described</td>
<td>mice</td>
<td>error bars are mean +/- SEM</td>
<td>not described</td>
<td>not described</td>
</tr>
</tbody>
</table>
Methods and Fig. legend

One way ANOVA followed by Tukey-test

<table>
<thead>
<tr>
<th>Methods and Fig. legend</th>
<th>error bars are mean +/- SEM</th>
<th>Methods and Fig. legend</th>
<th>error bars are mean +/- SEM</th>
<th>Methods and Fig. legend</th>
<th>error bars are mean +/- SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT control, n = 9; WT + T3 SCI, n = 8; WT + hM4Di + T3 SCI, n = 7; Vglut2-Cre + hM4Di + T3 SCI, n = 7; Chat-Cre + hM4Di + T3 SCI, n = 5</td>
<td>not described</td>
<td>Control vs WT +T3 SCI, p = <0.0001; Control vs WT +hM4Di+T3 SCI, p = 0.0152; Control vs vGlut2-Cre +hM4Di+T3 SCI, p = 0.9581; Control vs Chat-Cre +hM4Di+T3 SCI, p = 0.1316; WT +T3 SCI vs WT +hM4Di+T3 SCI, p = 0.5177; WT +T3 SCI vs vGlut2-Cre +hM4Di+T3 SCI, p = 0.0002; WT +T3 SCI vs Chat-Cre +hM4Di+T3 SCI, p = 0.3697; WT +hM4Di+T3 SCI vs vGlut2-Cre+hM4Di+T3 SCI, p = 0.0097; WT +hM4Di+T3 SCI vs Chat-Cre+hM4Di+T3 SCI, p = 0.9912; vGlut2-Cre+hM4Di+T3 SCI vs Chat-Cre+hM4Di+T3 SCI, p = 0.0688</td>
<td>not described</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n = 3; n = 1; n = 5</td>
<td>not described</td>
<td>F(4, 31) = 14.334</td>
<td>not described</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Student’s t test

<table>
<thead>
<tr>
<th>Methods and Fig. legend</th>
<th>error bars are mean +/- SEM</th>
<th>Methods and Fig. legend</th>
<th>error bars are mean +/- SEM</th>
<th>Methods and Fig. legend</th>
<th>error bars are mean +/- SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 7, n = 3; day 10, n = 1; day 28, n = 5</td>
<td>not described</td>
<td>T3SCI–CRD vs T3SCI+CRD, p = <0.0001; T3SCI–CRD vs cont–CRD, p = 0.9993; T3SCI–CRD vs cont+CRD, p = 0.1761; T3SCI+CRD vs cont–CRD, p = <0.0001; T3SCI+CRD vs cont+CRD, p = 0.0013; cont–CRD vs cont +CRD, p = 0.1463</td>
<td>not described</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n = 3</td>
<td>not described</td>
<td>F (3, 10) = 31.86</td>
<td>not described</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

One way ANOVA followed by Tukey-test

<table>
<thead>
<tr>
<th>Methods and Fig. legend</th>
<th>error bars are mean +/- SEM</th>
<th>Methods and Fig. legend</th>
<th>error bars are mean +/- SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>control with or without CRD, n = 3; T3 SCI (day 28) without CRD, n = 3; T3 SCI (day 28) with CRD, n = 5</td>
<td>not described</td>
<td>not described</td>
<td></td>
</tr>
</tbody>
</table>

Fig. legend

<table>
<thead>
<tr>
<th>Methods and Fig. legend</th>
<th>error bars are mean +/- SEM</th>
<th>Methods and Fig. legend</th>
<th>error bars are mean +/- SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>n = 3</td>
<td>not described</td>
<td>not described</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 3g
Representative figures

1. Are any representative images shown (including Western blots and immunohistochemistry/staining) in the paper?

 If so, what figure(s)?

2. For each representative image, is there a clear statement of how many times this experiment was successfully repeated and a discussion of any limitations in repeatability?

 If so, where is this reported (section, paragraph #)?

Statistics and general methods

1. Is there a justification of the sample size?

 If so, how was it justified?

 Where (section, paragraph #)?

 Even if no sample size calculation was performed, authors should report why the sample size is adequate to measure their effect size.

2. Are statistical tests justified as appropriate for every figure?

 Where (section, paragraph #)?

 a. If there is a section summarizing the statistical methods in the methods, is the statistical test for each experiment clearly defined?

 Yes. We described the kinds of statistical test done in each figure legend and Methods, paragraph 13.

 b. Do the data meet the assumptions of the specific statistical test you chose (e.g. normality for a parametric test)?

 Yes. Normality was analyzed with Brown-Forsythe test. When sample numbers were too small to calculate, distribution was assumed to be normal.

 It is described in Methods (13th paragraph, Statistical analyses).

 c. Is there any estimate of variance within each group of data?

 Is the variance similar between groups that are being statistically compared?

 Yes. Equality of variances between group pairs were analyzed with F test, respectively. Equality of variances among the groups was analyzed with Brown-Forsythe test.

 It is described in Methods (13th paragraph, Statistical analyses).
d. Are tests specified as one- or two-sided?
 Yes, it is described in Methods (13th paragraph, Statistical analyses).

e. Are there adjustments for multiple comparisons?
 Yes.

3. Are criteria for excluding data points reported?
 Was this criterion established prior to data collection?
 Where is this described (section, paragraph #)?
 Yes.
 Yes.
 It is stated in Methods, 4th and 7th paragraph.

4. Define the method of randomization used to assign subjects (or samples) to the experimental groups and to collect and process data.
 If no randomization was used, state so.
 Where does this appear (section, paragraph #)?
 Mice were randomly chosen for each experimental group. It is described in Methods, 11th paragraph.

5. Is a statement of the extent to which investigator knew the group allocation during the experiment and in assessing outcome included?
 If no blinding was done, state so.
 Where (section, paragraph #)?
 Experiments were done with blinded observer, which is stated in Methods, 1st paragraph.

6. For experiments in live vertebrates, is a statement of compliance with ethical guidelines/regulations included?
 Where (section, paragraph #)?
 Yes.
 It is stated in Methods, 2nd paragraph.

7. Is the species of the animals used reported?
 Where (section, paragraph #)?
 Yes.
 It is stated in Methods, 2nd paragraph.

8. Is the strain of the animals (including background strains of KO/transgenic animals used) reported?
 Where (section, paragraph #)?
 Yes.
 It is stated in Methods, 2nd paragraph.

9. Is the sex of the animals/subjects used reported?
 Where (section, paragraph #)?
 Yes.
 It is stated in Methods, 2nd and 4th paragraph.

10. Is the age of the animals/subjects reported?
 Where (section, paragraph #)?
 Yes.
 It is stated in Methods, 2nd and 4th paragraph.

11. For animals housed in a vivarium, is the light/dark cycle reported?
 Where (section, paragraph #)?
 Yes.
 It is stated in Methods, 4th paragraph.

12. For animals housed in a vivarium, is the housing group (i.e. number of animals per cage) reported?
 Where (section, paragraph #)?
 Yes.
 Maximum 4 mice / cage were used. It is stated in Methods, 4th paragraph.
13. For behavioral experiments, is the time of day reported (e.g. light or dark cycle)?
 Where (section, paragraph #)?
 There are no behavioral tests in this report.

14. Is the previous history of the animals/subjects (e.g. prior drug administration, surgery, behavioral testing) reported?
 Where (section, paragraph #)?
 Yes.
 It is stated in Methods, 11th paragraph and Fig. 3b.

 a. If multiple behavioral tests were conducted in the same group of animals, is this reported?
 Where (section, paragraph #)?
 N/A

15. If any animals/subjects were excluded from analysis, is this reported?
 Where (section, paragraph #)?
 Yes, it is described in Methods, 4th and 7th paragraph.

 a. How were the criteria for exclusion defined?
 Where is this described (section, paragraph #)?
 These are described in Methods, 4th and 7th paragraph. SCI mice died of unknown causes before intended date of analyses were excluded from the experiments. Spinal cords with no labeling or very few PRV+ cells (~10 cells in the lateral edge of the gray matter) were considered an intrinsic variability in injection and/or uptake of the virus and were excluded from further analyses.

 b. Specify reasons for any discrepancy between the number of animals at the beginning and end of the study.
 Where is this described (section, paragraph #)?
 N/A

Reagents

1. Have antibodies been validated for use in the system under study (assay and species)?
 Yes.

 a. Is antibody catalog number given?
 Where does this appear (section, paragraph #)?
 Yes.
 It is described in Methods, 6th paragraph.

 b. Where were the validation data reported (citation, supplementary information, Antibodypedia)?
 Where does this appear (section, paragraph #)?
 They are reported in previous studies using the antibody and in the information (data sheet) of each antibody offered from the company.

2. Cell line identity
 N/A

 a. Are any cell lines used in this paper listed in the database of commonly misidentified cell lines maintained by ICLAC and NCBI Biosample?
 Where (section, paragraph #)?
b. If yes, include in the Methods section a scientific justification of their use—indicate here in which section and paragraph the justification can be found.

N/A

c. For each cell line, include in the Methods section a statement that specifies:
 - the source of the cell lines
 - have the cell lines been authenticated? If so, by which method?
 - have the cell lines been tested for mycoplasma contamination?

Where (section, paragraph #)?

N/A

Data deposition

Data deposition in a public repository is mandatory for:

a. Protein, DNA and RNA sequences
b. Macromolecular structures
c. Crystallographic data for small molecules
d. Microarray data

Deposition is strongly recommended for many other datasets for which structured public repositories exist; more details on our data policy are available here. We encourage the provision of other source data in supplementary information or in unstructured repositories such as Figshare and Dryad.

We encourage publication of Data Descriptors (see Scientific Data) to maximize data reuse.

1. Are accession codes for deposit dates provided?

Where (section, paragraph #)?

N/A

Computer code/software

Any custom algorithm/software that is central to the methods must be supplied by the authors in a usable and readable form for readers at the time of publication. However, referees may ask for this information at any time during the review process.

1. Identify all custom software or scripts that were required to conduct the study and where in the procedures each was used.

N/A

2. If computer code was used to generate results that are central to the paper’s conclusions, include a statement in the Methods section under “Code availability” to indicate whether and how the code can be accessed. Include version information as necessary and any restrictions on availability.

N/A

Human subjects

1. Which IRB approved the protocol?

Where is this stated (section, paragraph #)?

N/A
2. Is demographic information on all subjects provided?
 Where (section, paragraph #)?
 N/A

3. Is the number of human subjects, their age and sex clearly defined?
 Where (section, paragraph #)?
 N/A

4. Are the inclusion and exclusion criteria (if any) clearly specified?
 Where (section, paragraph #)?
 N/A

5. How well were the groups matched?
 Where is this information described (section, paragraph #)?
 N/A

6. Is a statement included confirming that informed consent was obtained from all subjects?
 Where (section, paragraph #)?
 N/A

7. For publication of patient photos, is a statement included confirming that consent to publish was obtained?
 Where (section, paragraph #)?
 N/A

fMRI studies

For papers reporting functional imaging (fMRI) results please ensure that these minimal reporting guidelines are met and that all this information is clearly provided in the methods:

1. Were any subjects scanned but then rejected for the analysis after the data was collected?
 N/A

 a. If yes, is the number rejected and reasons for rejection described?
 Where (section, paragraph #)?
 N/A

2. Is the number of blocks, trials or experimental units per session and/or subjects specified?
 Where (section, paragraph #)?
 N/A

3. Is the length of each trial and interval between trials specified?
 N/A

4. Is a blocked, event-related, or mixed design being used? If applicable, please specify the block length or how the event-related or mixed design was optimized.
 N/A

5. Is the task design clearly described?
 Where (section, paragraph #)?
 N/A
<table>
<thead>
<tr>
<th>Question</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. How was behavioral performance measured?</td>
<td>N/A</td>
</tr>
<tr>
<td>7. Is an ANOVA or factorial design being used?</td>
<td>N/A</td>
</tr>
<tr>
<td>8. For data acquisition, is a whole brain scan used?</td>
<td>N/A</td>
</tr>
<tr>
<td>If not, state area of acquisition.</td>
<td>N/A</td>
</tr>
<tr>
<td>a. How was this region determined?</td>
<td>N/A</td>
</tr>
<tr>
<td>9. Is the field strength (in Tesla) of the MRI system stated?</td>
<td>N/A</td>
</tr>
<tr>
<td>a. Is the pulse sequence type (gradient/spin echo, EPI/spiral)</td>
<td>N/A</td>
</tr>
<tr>
<td>stated?</td>
<td>N/A</td>
</tr>
<tr>
<td>b. Are the field-of-view, matrix size, slice thickness, and TE/TR/flip angle clearly stated?</td>
<td>N/A</td>
</tr>
<tr>
<td>10. Are the software and specific parameters (model/functions,</td>
<td>N/A</td>
</tr>
<tr>
<td>smoothing kernel size if applicable, etc.) used for data processing and pre-processing clearly stated?</td>
<td>N/A</td>
</tr>
<tr>
<td>11. Is the coordinate space for the anatomical/functional imaging data</td>
<td>N/A</td>
</tr>
<tr>
<td>clearly defined as subject/native space or standardized stereotaxic space, e.g., original Talairach, MNI305, ICBM152, etc? Where (section, paragraph #)?</td>
<td>N/A</td>
</tr>
<tr>
<td>12. If there was data normalization/standardization to a specific space template, are the type of transformation (linear vs. nonlinear) used and image types being transformed clearly described? Where (section, paragraph #)?</td>
<td>N/A</td>
</tr>
<tr>
<td>13. How were anatomical locations determined, e.g., via an automated labeling algorithm (AAL), standardized coordinate database (Talairach daemon), probabilistic atlases, etc.?</td>
<td>N/A</td>
</tr>
<tr>
<td>14. Were any additional regressors (behavioral covariates, motion etc)</td>
<td>N/A</td>
</tr>
<tr>
<td>used?</td>
<td>N/A</td>
</tr>
<tr>
<td>15. Is the contrast construction clearly defined?</td>
<td>N/A</td>
</tr>
<tr>
<td>16. Is a mixed/random effects or fixed inference used?</td>
<td>N/A</td>
</tr>
<tr>
<td>a. If fixed effects inference used, is this justified?</td>
<td>N/A</td>
</tr>
<tr>
<td>17. Were repeated measures used (multiple measurements per subject)?</td>
<td>N/A</td>
</tr>
<tr>
<td>a. If so, are the method to account for within subject correlation and the assumptions made about variance clearly stated?</td>
<td>N/A</td>
</tr>
</tbody>
</table>
18. If the threshold used for inference and visualization in figures varies, is this clearly stated?
N/A

19. Are statistical inferences corrected for multiple comparisons?
N/A
a. If not, is this labeled as uncorrected?
N/A

20. Are the results based on an ROI (region of interest) analysis?
N/A
a. If so, is the rationale clearly described?
N/A
b. How were the ROI’s defined (functional vs anatomical localization)?
N/A

21. Is there correction for multiple comparisons within each voxel?
N/A

22. For cluster-wise significance, is the cluster-defining threshold and the corrected significance level defined?
N/A

Additional comments

Additional Comments