Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Modeling ALS with motor neurons derived from human induced pluripotent stem cells

Abstract

Directing the differentiation of induced pluripotent stem cells into motor neurons has allowed investigators to develop new models of amyotrophic lateral sclerosis (ALS). However, techniques vary between laboratories and the cells do not appear to mature into fully functional adult motor neurons. Here we discuss common developmental principles of both lower and upper motor neuron development that have led to specific derivation techniques. We then suggest how these motor neurons may be matured further either through direct expression or administration of specific factors or coculture approaches with other tissues. Ultimately, through a greater understanding of motor neuron biology, it will be possible to establish more reliable models of ALS. These in turn will have a greater chance of validating new drugs that may be effective for the disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Emulating MN developmental signaling in vitro.
Figure 2: Comparison of published LMN differentiation protocols.
Figure 3: Induced action potentials evolve over time.
Figure 4: (a) Coculture of the neuromuscular circuit.
Figure 5: Classification of diverse neocortical projection neurons.
Figure 6: Cell-extrinsic and cell-intrinsic factors regulate the development of corticofugal projection neurons in sequential, 'nested' stages of differentiation.

Similar content being viewed by others

References

  1. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).

    CAS  PubMed  Google Scholar 

  2. Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920 (2007).

    CAS  PubMed  Google Scholar 

  3. Svendsen, C.N. Back to the future: how human induced pluripotent stem cells will transform regenerative medicine. Hum. Mol. Genet. 22 (R1), R32–R38 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Sandoe, J. & Eggan, K. Opportunities and challenges of pluripotent stem cell neurodegenerative disease models. Nat. Neurosci. 16, 780–789 (2013).

    CAS  PubMed  Google Scholar 

  5. Ericson, J., Thor, S., Edlund, T., Jessell, T.M. & Yamada, T. Early stages of motor neuron differentiation revealed by expression of homeobox gene Islet-1. Science 256, 1555–1560 (1992).

    CAS  PubMed  Google Scholar 

  6. Mathis, L., Kulesa, P.M. & Fraser, S.E. FGF receptor signalling is required to maintain neural progenitors during Hensen's node progression. Nat. Cell Biol. 3, 559–566 (2001).

    CAS  PubMed  Google Scholar 

  7. Storey, K.G. et al. Early posterior neural tissue is induced by FGF in the chick embryo. Development 125, 473–484 (1998).

    CAS  PubMed  Google Scholar 

  8. Jessell, T.M. Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nat. Rev. Genet. 1, 20–29 (2000).

    CAS  PubMed  Google Scholar 

  9. Kanning, K.C., Kaplan, A. & Henderson, C.E. Motor neuron diversity in development and disease. Annu. Rev. Neurosci. 33, 409–440 (2010).

    CAS  PubMed  Google Scholar 

  10. Stifani, N. Motor neurons and the generation of spinal motor neuron diversity. Front. Cell. Neurosci. 8, 293 (2014).

    PubMed  PubMed Central  Google Scholar 

  11. Jessell, T.M. & Sanes, J.R. Development. The decade of the developing brain. Curr. Opin. Neurobiol. 10, 599–611 (2000).

    CAS  PubMed  Google Scholar 

  12. Rallu, M., Corbin, J.G. & Fishell, G. Parsing the prosencephalon. Nat. Rev. Neurosci. 3, 943–951 (2002).

    CAS  PubMed  Google Scholar 

  13. Muhr, J., Graziano, E., Wilson, S., Jessell, T.M. & Edlund, T. Convergent inductive signals specify midbrain, hindbrain, and spinal cord identity in gastrula stage chick embryos. Neuron 23, 689–702 (1999).

    CAS  PubMed  Google Scholar 

  14. Liu, J.P., Laufer, E. & Jessell, T.M. Assigning the positional identity of spinal motor neurons: rostrocaudal patterning of Hox-c expression by FGFs, Gdf11, and retinoids. Neuron 32, 997–1012 (2001).

    CAS  PubMed  Google Scholar 

  15. Nordström, U., Jessell, T.M. & Edlund, T. Progressive induction of caudal neural character by graded Wnt signaling. Nat. Neurosci. 5, 525–532 (2002).

    PubMed  Google Scholar 

  16. Roelink, H. et al. Floor plate and motor neuron induction by different concentrations of the amino-terminal cleavage product of sonic hedgehog autoproteolysis. Cell 81, 445–455 (1995).

    CAS  PubMed  Google Scholar 

  17. Ericson, J., Morton, S., Kawakami, A., Roelink, H. & Jessell, T.M. Two critical periods of Sonic Hedgehog signaling required for the specification of motor neuron identity. Cell 87, 661–673 (1996).

    CAS  PubMed  Google Scholar 

  18. Wichterle, H., Lieberam, I., Porter, J.A. & Jessell, T.M. Directed differentiation of embryonic stem cells into motor neurons. Cell 110, 385–397 (2002).

    CAS  PubMed  Google Scholar 

  19. Itskovitz-Eldor, J. et al. Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Mol. Med. 6, 88–95 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Lee, S.-H., Lumelsky, N., Studer, L., Auerbach, J.M. & McKay, R.D. Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nat. Biotechnol. 18, 675–679 (2000).

    CAS  PubMed  Google Scholar 

  21. Li, X.J. et al. Specification of motoneurons from human embryonic stem cells. Nat. Biotechnol. 23, 215–221 (2005).

    PubMed  Google Scholar 

  22. Chambers, S.M. et al. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat. Biotechnol. 27, 275–280 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Chuang, P.T. & McMahon, A.P. Vertebrate Hedgehog signalling modulated by induction of a Hedgehog-binding protein. Nature 397, 617–621 (1999).

    CAS  PubMed  Google Scholar 

  24. Amoroso, M.W. et al. Accelerated high-yield generation of limb-innervating motor neurons from human stem cells. J. Neurosci. 33, 574–586 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Maury, Y. et al. Combinatorial analysis of developmental cues efficiently converts human pluripotent stem cells into multiple neuronal subtypes. Nat. Biotechnol. 33, 89–96 (2015).

    CAS  PubMed  Google Scholar 

  26. Patani, R. et al. Retinoid-independent motor neurogenesis from human embryonic stem cells reveals a medial columnar ground state. Nat. Commun. 2, 214 (2011).

    CAS  PubMed  Google Scholar 

  27. Reinhardt, P. et al. Derivation and expansion using only small molecules of human neural progenitors for neurodegenerative disease modeling. PLoS One 8, e59252 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Son, E.Y. et al. Conversion of mouse and human fibroblasts into functional spinal motor neurons. Cell Stem Cell 9, 205–218 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Du, Z.-W. et al. Generation and expansion of highly pure motor neuron progenitors from human pluripotent stem cells. Nat. Commun. 6, 6626 (2015).

    CAS  PubMed  Google Scholar 

  30. Philippidou, P. & Dasen, J.S. Hox genes: choreographers in neural development, architects of circuit organization. Neuron 80, 12–34 (2013).

    CAS  PubMed  Google Scholar 

  31. Dasen, J.S., Tice, B.C., Brenner-Morton, S. & Jessell, T.M. A Hox regulatory network establishes motor neuron pool identity and target-muscle connectivity. Cell 123, 477–491 (2005).

    CAS  PubMed  Google Scholar 

  32. Ensini, M., Tsuchida, T.N., Belting, H.G. & Jessell, T.M. The control of rostrocaudal pattern in the developing spinal cord: specification of motor neuron subtype identity is initiated by signals from paraxial mesoderm. Development 125, 969–982 (1998).

    CAS  PubMed  Google Scholar 

  33. Davis-Dusenbery, B.N., Williams, L.A., Klim, J.R. & Eggan, K. How to make spinal motor neurons. Development 141, 491–501 (2014).

    CAS  PubMed  Google Scholar 

  34. Lee, H. et al. Directed differentiation and transplantation of human embryonic stem cell-derived motoneurons. Stem Cells 25, 1931–1939 (2007).

    CAS  PubMed  Google Scholar 

  35. Liu, J.-P., Laufer, E. & Jessell, T.M. Assigning the positional identity of spinal motor neurons: rostrocaudal patterning of Hox-c expression by FGFs, Gdf11, and retinoids. Neuron 32, 997–1012 (2001).

    CAS  PubMed  Google Scholar 

  36. Janesick, A. et al. Active repression by RARγ signaling is required for vertebrate axial elongation. Development 141, 2260–2270 (2014).

    CAS  PubMed  Google Scholar 

  37. Cambray, N. & Wilson, V. Axial progenitors with extensive potency are localised to the mouse chordoneural hinge. Development 129, 4855–4866 (2002).

    CAS  PubMed  Google Scholar 

  38. Kicheva, A. et al. Coordination of progenitor specification and growth in mouse and chick spinal cord. Science 345, 1254927 (2014).

    PubMed  PubMed Central  Google Scholar 

  39. Tzouanacou, E., Wegener, A., Wymeersch, F.J., Wilson, V. & Nicolas, J.F. Redefining the progression of lineage segregations during mammalian embryogenesis by clonal analysis. Dev. Cell 17, 365–376 (2009).

    CAS  PubMed  Google Scholar 

  40. Olivera-Martinez, I., Harada, H., Halley, P.A. & Storey, K.G. Loss of FGF-dependent mesoderm identity and rise of endogenous retinoid signalling determine cessation of body axis elongation. PLoS Biol. 10, e1001415 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Andoniadou, C.L. & Martinez-Barbera, J.P. Developmental mechanisms directing early anterior forebrain specification in vertebrates. Cell. Mol. Life Sci. 70, 3739–3752 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Gouti, M. et al. In vitro generation of neuromesodermal progenitors reveals distinct roles for wnt signalling in the specification of spinal cord and paraxial mesoderm identity. PLoS Biol. 12, e1001937 (2014).

    PubMed  PubMed Central  Google Scholar 

  43. Turner, D.A. et al. Wnt/β-catenin and FGF signalling direct the specification and maintenance of a neuromesodermal axial progenitor in ensembles of mouse embryonic stem cells. Development 141, 4243–4253 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Lippmann, E.S. et al. Deterministic HOX patterning in human pluripotent stem cell-derived neuroectoderm. Stem Cell Reports 4, 632–644 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Hayworth, C.R. & Gonzalez-Lima, F. Pre-symptomatic detection of chronic motor deficits and genotype prediction in congenic B6.SOD1(G93A) ALS mouse model. Neuroscience 164, 975–985 (2009).

    CAS  PubMed  Google Scholar 

  46. Arber, S. et al. Requirement for the homeobox gene Hb9 in the consolidation of motor neuron identity. Neuron 23, 659–674 (1999).

    CAS  PubMed  Google Scholar 

  47. Thaler, J. et al. Active suppression of interneuron programs within developing motor neurons revealed by analysis of homeodomain factor HB9. Neuron 23, 675–687 (1999).

    CAS  PubMed  Google Scholar 

  48. Wilson, J.M. et al. Conditional rhythmicity of ventral spinal interneurons defined by expression of the Hb9 homeodomain protein. J. Neurosci. 25, 5710–5719 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Thaler, J.P. et al. A postmitotic role for Isl-class LIM homeodomain proteins in the assignment of visceral spinal motor neuron identity. Neuron 41, 337–350 (2004).

    CAS  PubMed  Google Scholar 

  50. Sternberger, L.A. & Sternberger, N.H. Monoclonal antibodies distinguish phosphorylated and nonphosphorylated forms of neurofilaments in situ. Proc. Natl. Acad. Sci. USA 80, 6126–6130 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Schafer, M.K., Weihe, E., Erickson, J.D. & Eiden, L.E. Human and monkey cholinergic neurons visualized in paraffin-embedded tissues by immunoreactivity for VAChT, the vesicular acetylcholine transporter. J. Mol. Neurosci. 6, 225–235 (1995).

    CAS  PubMed  Google Scholar 

  52. Amin, N.D. et al. Loss of motoneuron-specific microRNA-218 causes systemic neuromuscular failure. Science 350, 1525–1529 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Frey, D. et al. Early and selective loss of neuromuscular synapse subtypes with low sprouting competence in motoneuron diseases. J. Neurosci. 20, 2534–2542 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Sockanathan, S. & Jessell, T.M. Motor neuron-derived retinoid signaling specifies the subtype identity of spinal motor neurons. Cell 94, 503–514 (1998).

    CAS  PubMed  Google Scholar 

  55. Dasen, J.S., De Camilli, A., Wang, B., Tucker, P.W. & Jessell, T.M. Hox repertoires for motor neuron diversity and connectivity gated by a single accessory factor, FoxP1. Cell 134, 304–316 (2008).

    CAS  PubMed  Google Scholar 

  56. Thaler, J.P., Lee, S.-K., Jurata, L.W., Gill, G.N. & Pfaff, S.L. LIM factor Lhx3 contributes to the specification of motor neuron and interneuron identity through cell-type-specific protein-protein interactions. Cell 110, 237–249 (2002).

    CAS  PubMed  Google Scholar 

  57. Adams, K.L., Rousso, D.L., Umbach, J.A. & Novitch, B.G. Foxp1-mediated programming of limb-innervating motor neurons from mouse and human embryonic stem cells. Nat. Commun. 6, 6778 (2015).

    CAS  PubMed  Google Scholar 

  58. Qu, Q. et al. High-efficiency motor neuron differentiation from human pluripotent stem cells and the function of Islet-1. Nat. Commun. 5, 3449 (2014).

    PubMed  Google Scholar 

  59. Sharma, K. et al. LIM homeodomain factors Lhx3 and Lhx4 assign subtype identities for motor neurons. Cell 95, 817–828 (1998).

    CAS  PubMed  Google Scholar 

  60. Kiskinis, E. et al. Pathways disrupted in human ALS motor neurons identified through genetic correction of mutant SOD1. Cell Stem Cell 14, 781–795 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Sareen, D. et al. Targeting RNA foci in iPSC-derived motor neurons from ALS patients with a C9ORF72 repeat expansion. Sci. Transl. Med. 5, 208ra149 (2013).

    PubMed  PubMed Central  Google Scholar 

  62. Patterson, M. et al. Defining the nature of human pluripotent stem cell progeny. Cell Res. 22, 178–193 (2012).

    CAS  PubMed  Google Scholar 

  63. Stein, J.L. et al. A quantitative framework to evaluate modeling of cortical development by neural stem cells. Neuron 83, 69–86 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Hjelm, B.E. et al. In vitro-differentiated neural cell cultures progress towards donor-identical brain tissue. Hum. Mol. Genet. 22, 3534–3546 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Chen, H. et al. Modeling ALS with iPSCs reveals that mutant SOD1 misregulates neurofilament balance in motor neurons. Cell Stem Cell 14, 796–809 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Devlin, A.-C. et al. Human iPSC-derived motoneurons harbouring TARDBP or C9ORF72 ALS mutations are dysfunctional despite maintaining viability. Nat. Commun. 6, 5999 (2015).

    CAS  PubMed  Google Scholar 

  67. Johnson, M.A., Weick, J.P., Pearce, R.A. & Zhang, S.C. Functional neural development from human embryonic stem cells: accelerated synaptic activity via astrocyte coculture. J. Neurosci. 27, 3069–3077 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Takazawa, T. et al. Maturation of spinal motor neurons derived from human embryonic stem cells. PLoS One 7, e40154 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Wainger, B.J. et al. Intrinsic membrane hyperexcitability of amyotrophic lateral sclerosis patient-derived motor neurons. Cell Reports 7, 1–11 (2014).

    CAS  PubMed  Google Scholar 

  70. Gogliotti, R.G. et al. Motor neuron rescue in spinal muscular atrophy mice demonstrates that sensory-motor defects are a consequence, not a cause, of motor neuron dysfunction. J. Neurosci. 32, 3818–3829 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Kirkby, L.A., Sack, G.S., Firl, A. & Feller, M.B. A role for correlated spontaneous activity in the assembly of neural circuits. Neuron 80, 1129–1144 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Di Giorgio, F.P., Carrasco, M.A., Siao, M.C., Maniatis, T. & Eggan, K. Non-cell autonomous effect of glia on motor neurons in an embryonic stem cell-based ALS model. Nat. Neurosci. 10, 608–614 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Lamas, N.J. et al. Neurotrophic requirements of human motor neurons defined using amplified and purified stem cell-derived cultures. PLoS One 9, e110324 (2014).

    PubMed  PubMed Central  Google Scholar 

  74. Camu, W. & Henderson, C.E. Purification of embryonic rat motoneurons by panning on a monoclonal antibody to the low-affinity NGF receptor. J. Neurosci. Methods 44, 59–70 (1992).

    CAS  PubMed  Google Scholar 

  75. Toma, J.S. et al. Motoneurons derived from induced pluripotent stem cells develop mature phenotypes typical of endogenous spinal motoneurons. J. Neurosci. 35, 1291–1306 (2015).

    PubMed  PubMed Central  Google Scholar 

  76. Bryson, J.B. et al. Optical control of muscle function by transplantation of stem cell-derived motor neurons in mice. Science 344, 94–97 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Sareen, D. et al. Human induced pluripotent stem cells are a novel source of neural progenitor cells (iNPCs) that migrate and integrate in the rodent spinal cord. J. Comp. Neurol. 522, 2707–2728 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Krencik, R. & Zhang, S.-C. Directed differentiation of functional astroglial subtypes from human pluripotent stem cells. Nat. Protoc. 6, 1710–1717 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Hosoyama, T., McGivern, J.V., Van Dyke, J.M., Ebert, A.D. & Suzuki, M. Derivation of myogenic progenitors directly from human pluripotent stem cells using a sphere-based culture. Stem Cells Transl. Med. 3, 564–574 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Tsai, H.H. et al. Regional astrocyte allocation regulates CNS synaptogenesis and repair. Science 337, 358–362 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Bhatia, S.N. & Ingber, D.E. Microfluidic organs-on-chips. Nat. Biotechnol. 32, 760–772 (2014).

    CAS  PubMed  Google Scholar 

  82. Hansen, D.V., Rubenstein, J.L.R. & Kriegstein, A.R. Deriving excitatory neurons of the neocortex from pluripotent stem cells. Neuron 70, 645–660 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Greig, L.C., Woodworth, M.B., Galazo, M.J., Padmanabhan, H. & Macklis, J.D. Molecular logic of neocortical projection neuron specification, development and diversity. Nat. Rev. Neurosci. 14, 755–769 (2013).

    CAS  PubMed  Google Scholar 

  84. Fame, R.M., MacDonald, J.L. & Macklis, J.D. Development, specification, and diversity of callosal projection neurons. Trends Neurosci. 34, 41–50 (2011).

    CAS  PubMed  Google Scholar 

  85. Molyneaux, B.J., Arlotta, P., Menezes, J.R. & Macklis, J.D. Neuronal subtype specification in the cerebral cortex. Nat. Rev. Neurosci. 8, 427–437 (2007).

    CAS  PubMed  Google Scholar 

  86. Sadegh, C. & Macklis, J.D. Established monolayer differentiation of mouse embryonic stem cells generates heterogeneous neocortical-like neurons stalled at a stage equivalent to midcorticogenesis. J. Comp. Neurol. 522, 2691–2706 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Cederquist, G.Y., Azim, E., Shnider, S.J., Padmanabhan, H. & Macklis, J.D. Lmo4 establishes rostral motor cortex projection neuron subtype diversity. J. Neurosci. 33, 6321–6332 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Sohur, U.S., Padmanabhan, H.K., Kotchetkov, I.S., Menezes, J.R. & Macklis, J.D. Anatomic and molecular development of corticostriatal projection neurons in mice. Cereb. Cortex 24, 293–303 (2014).

    PubMed  Google Scholar 

  89. Watanabe, K. et al. Directed differentiation of telencephalic precursors from embryonic stem cells. Nat. Neurosci. 8, 288–296 (2005).

    CAS  PubMed  Google Scholar 

  90. Gaspard, N. & Vanderhaeghen, P. Mechanisms of neural specification from embryonic stem cells. Curr. Opin. Neurobiol. 20, 37–43 (2010).

    CAS  PubMed  Google Scholar 

  91. Tao, W. & Lai, E. Telencephalon-restricted expression of BF-1, a new member of the HNF-3/fork head gene family, in the developing rat brain. Neuron 8, 957–966 (1992).

    CAS  PubMed  Google Scholar 

  92. Xuan, S. et al. Winged helix transcription factor BF-1 is essential for the development of the cerebral hemispheres. Neuron 14, 1141–1152 (1995).

    CAS  PubMed  Google Scholar 

  93. Acampora, D., Barone, P. & Simeone, A. Otx genes in corticogenesis and brain development. Cereb. Cortex 9, 533–542 (1999).

    CAS  PubMed  Google Scholar 

  94. Tiberi, L., Vanderhaeghen, P. & van den Ameele, J. Cortical neurogenesis and morphogens: diversity of cues, sources and functions. Curr. Opin. Cell Biol. 24, 269–276 (2012).

    CAS  PubMed  Google Scholar 

  95. Gaspard, N. et al. Generation of cortical neurons from mouse embryonic stem cells. Nat. Protoc. 4, 1454–1463 (2009).

    CAS  PubMed  Google Scholar 

  96. Espuny-Camacho, I. et al. Pyramidal neurons derived from human pluripotent stem cells integrate efficiently into mouse brain circuits in vivo. Neuron 77, 440–456 (2013).

    CAS  PubMed  Google Scholar 

  97. Shi, Y., Kirwan, P. & Livesey, F.J. Directed differentiation of human pluripotent stem cells to cerebral cortex neurons and neural networks. Nat. Protoc. 7, 1836–1846 (2012).

    CAS  PubMed  Google Scholar 

  98. Mariani, J. et al. Modeling human cortical development in vitro using induced pluripotent stem cells. Proc. Natl. Acad. Sci. USA 109, 12770–12775 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Schuurmans, C. & Guillemot, F. Molecular mechanisms underlying cell fate specification in the developing telencephalon. Curr. Opin. Neurobiol. 12, 26–34 (2002).

    CAS  PubMed  Google Scholar 

  100. Azim, E., Jabaudon, D., Fame, R.M. & Macklis, J.D. SOX6 controls dorsal progenitor identity and interneuron diversity during neocortical development. Nat. Neurosci. 12, 1238–1247 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Aota, S. et al. Pax6 autoregulation mediated by direct interaction of Pax6 protein with the head surface ectoderm-specific enhancer of the mouse Pax6 gene. Dev. Biol. 257, 1–13 (2003).

    CAS  PubMed  Google Scholar 

  102. Götz, M., Stoykova, A. & Gruss, P. Pax6 controls radial glia differentiation in the cerebral cortex. Neuron 21, 1031–1044 (1998).

    PubMed  Google Scholar 

  103. Georgala, P.A., Carr, C.B. & Price, D.J. The role of Pax6 in forebrain development. Dev. Neurobiol. 71, 690–709 (2011).

    CAS  PubMed  Google Scholar 

  104. Chou, S.J. & O'Leary, D.D. Role for Lhx2 in corticogenesis through regulation of progenitor differentiation. Mol. Cell. Neurosci. 56, 1–9 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Roy, A., Gonzalez-Gomez, M., Pierani, A., Meyer, G. & Tole, S. Lhx2 regulates the development of the forebrain hem system. Cereb. Cortex 24, 1361–1372 (2014).

    PubMed  Google Scholar 

  106. Arlotta, P. et al. Neuronal subtype-specific genes that control corticospinal motor neuron development in vivo. Neuron 45, 207–221 (2005).

    CAS  PubMed  Google Scholar 

  107. Chen, B. et al. The Fezf2-Ctip2 genetic pathway regulates the fate choice of subcortical projection neurons in the developing cerebral cortex. Proc. Natl. Acad. Sci. USA 105, 11382–11387 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Molyneaux, B.J., Arlotta, P., Hirata, T., Hibi, M. & Macklis, J.D. Fezl is required for the birth and specification of corticospinal motor neurons. Neuron 47, 817–831 (2005).

    CAS  PubMed  Google Scholar 

  109. McKenna, W.L. et al. Tbr1 and Fezf2 regulate alternate corticofugal neuronal identities during neocortical development. J. Neurosci. 31, 549–564 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Weimann, J.M. et al. Cortical neurons require Otx1 for the refinement of exuberant axonal projections to subcortical targets. Neuron 24, 819–831 (1999).

    CAS  PubMed  Google Scholar 

  111. MacDonald, J.L. & Roskams, A.J. Epigenetic regulation of nervous system development by DNA methylation and histone deacetylation. Prog. Neurobiol. 88, 170–183 (2009).

    CAS  PubMed  Google Scholar 

  112. Chen, B. & Cepko, C.L. Requirement of histone deacetylase activity for the expression of critical photoreceptor genes. BMC Dev. Biol. 7, 78 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Kishi, N. & Macklis, J.D. MECP2 is progressively expressed in post-migratory neurons and is involved in neuronal maturation rather than cell fate decisions. Mol. Cell. Neurosci. 27, 306–321 (2004).

    CAS  PubMed  Google Scholar 

  114. Tirard, M. et al. In vivo localization and identification of SUMOylated proteins in the brain of His6-HA-SUMO1 knock-in mice. Proc. Natl. Acad. Sci. USA 109, 21122–21127 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Dobreva, G., Dambacher, J. & Grosschedl, R. SUMO modification of a novel MAR-binding protein, SATB2, modulates immunoglobulin mu gene expression. Genes Dev. 17, 3048–3061 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Greenwald, I. & Rubin, G.M. Making a difference: the role of cell-cell interactions in establishing separate identities for equivalent cells. Cell 68, 271–281 (1992).

    CAS  PubMed  Google Scholar 

  117. Hashimoto-Torii, K. et al. Interaction between Reelin and Notch signaling regulates neuronal migration in the cerebral cortex. Neuron 60, 273–284 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Mizutani, K. & Saito, T. Progenitors resume generating neurons after temporary inhibition of neurogenesis by Notch activation in the mammalian cerebral cortex. Development 132, 1295–1304 (2005).

    CAS  PubMed  Google Scholar 

  119. Bultje, R.S. et al. Mammalian Par3 regulates progenitor cell asymmetric division via notch signaling in the developing neocortex. Neuron 63, 189–202 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Eiraku, M. et al. Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell 3, 519–532 (2008).

    CAS  PubMed  Google Scholar 

  121. Nasu, M. et al. Robust formation and maintenance of continuous stratified cortical neuroepithelium by laminin-containing matrix in mouse ES cell culture. PLoS One 7, e53024 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Díaz-Alonso, J. et al. The CB(1) cannabinoid receptor drives corticospinal motor neuron differentiation through the Ctip2/Satb2 transcriptional regulation axis. J. Neurosci. 32, 16651–16665 (2012).

    PubMed  PubMed Central  Google Scholar 

  123. Ozdinler, P.H. & Macklis, J.D. IGF-I specifically enhances axon outgrowth of corticospinal motor neurons. Nat. Neurosci. 9, 1371–1381 (2006).

    PubMed  Google Scholar 

  124. Dugas, J.C. et al. A novel purification method for CNS projection neurons leads to the identification of brain vascular cells as a source of trophic support for corticospinal motor neurons. J. Neurosci. 28, 8294–8305 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Johansson, P.A. et al. The transcription factor Otx2 regulates choroid plexus development and function. Development 140, 1055–1066 (2013).

    CAS  PubMed  Google Scholar 

  126. Lehtinen, M.K. et al. The cerebrospinal fluid provides a proliferative niche for neural progenitor cells. Neuron 69, 893–905 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Miller, J.D. et al. Human iPSC-based modeling of late-onset disease via progerin-induced aging. Cell Stem Cell 13, 691–705 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Borghese, L. et al. Inhibition of notch signaling in human embryonic stem cell-derived neural stem cells delays G1/S phase transition and accelerates neuronal differentiation in vitro and in vivo. Stem Cells 28, 955–964 (2010).

    CAS  PubMed  Google Scholar 

  129. Crawford, T.Q. & Roelink, H. The notch response inhibitor DAPT enhances neuronal differentiation in embryonic stem cell-derived embryoid bodies independently of sonic hedgehog signaling. Dev. Dyn. 236, 886–892 (2007).

    CAS  PubMed  Google Scholar 

  130. Rando, T.A. & Chang, H.Y. Aging, rejuvenation, and epigenetic reprogramming: resetting the aging clock. Cell 148, 46–57 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Mertens, J. et al. Directly reprogrammed human neurons retain aging-associated transcriptomic signatures and reveal age-related nucleocytoplasmic defects. Cell Stem Cell 17, 705–718 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Swarup, V. & Julien, J.-P. ALS pathogenesis: recent insights from genetics and mouse models. Prog. Neuropsychopharmacol. Biol. Psychiatry 35, 363–369 (2011).

    CAS  PubMed  Google Scholar 

  133. Dimos, J.T. et al. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 321, 1218–1221 (2008).

    CAS  PubMed  Google Scholar 

  134. DeJesus-Hernandez, M. et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72, 245–256 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Renton, A.E. et al. ITALSGEN Consortium. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72, 257–268 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Donnelly, C.J. et al. RNA toxicity from the ALS/FTD C9ORF72 expansion is mitigated by antisense intervention. Neuron 80, 415–428 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Pieri, M. et al. Altered excitability of motor neurons in a transgenic mouse model of familial amyotrophic lateral sclerosis. Neurosci. Lett. 351, 153–156 (2003).

    CAS  PubMed  Google Scholar 

  138. Kuo, J.J. et al. Hyperexcitability of cultured spinal motoneurons from presymptomatic ALS mice. J. Neurophysiol. 91, 571–575 (2004).

    PubMed  Google Scholar 

  139. van Zundert, B. et al. Neonatal neuronal circuitry shows hyperexcitable disturbance in a mouse model of the adult-onset neurodegenerative disease amyotrophic lateral sclerosis. J. Neurosci. 28, 10864–10874 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Vucic, S. & Kiernan, M.C. Novel threshold tracking techniques suggest that cortical hyperexcitability is an early feature of motor neuron disease. Brain 129, 2436–2446 (2006).

    PubMed  Google Scholar 

  141. Vucic, S., Nicholson, G.A. & Kiernan, M.C. Cortical hyperexcitability may precede the onset of familial amyotrophic lateral sclerosis. Brain 131, 1540–1550 (2008).

    PubMed  Google Scholar 

  142. Delestrée, N. et al. Adult spinal motoneurones are not hyperexcitable in a mouse model of inherited amyotrophic lateral sclerosis. J. Physiol. (Lond.) 592, 1687–1703 (2014).

    Google Scholar 

  143. Leroy, F., Lamotte d'Incamps, B., Imhoff-Manuel, R.D. & Zytnicki, D. Early intrinsic hyperexcitability does not contribute to motoneuron degeneration in amyotrophic lateral sclerosis. Elife 3, e04046 (2014).

    PubMed  PubMed Central  Google Scholar 

  144. Ozdinler, P.H. et al. Corticospinal motor neurons and related subcerebral projection neurons undergo early and specific neurodegeneration in hSOD1G93A transgenic ALS mice. J. Neurosci. 31, 4166–4177 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Thomsen, G.M. et al. Delayed disease onset and extended survival in the SOD1G93A rat model of amyotrophic lateral sclerosis after suppression of mutant SOD1 in the motor cortex. J. Neurosci. 34, 15587–15600 (2014).

    PubMed  PubMed Central  Google Scholar 

  146. Ziemann, U. et al. Impaired motor cortex inhibition in patients with amyotrophic lateral sclerosis. Evidence from paired transcranial magnetic stimulation. Neurology 49, 1292–1298 (1997).

    CAS  PubMed  Google Scholar 

  147. Bae, J.S., Simon, N.G., Menon, P., Vucic, S. & Kiernan, M.C. The puzzling case of hyperexcitability in amyotrophic lateral sclerosis. J. Clin. Neurol. 9, 65–74 (2013).

    PubMed  PubMed Central  Google Scholar 

  148. Hu, B.-Y. & Zhang, S.-C. Differentiation of spinal motor neurons from pluripotent human stem cells. Nat. Protoc. 4, 1295–1304 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank S. Svendsen for assistance in editing this manuscript. All authors were funded by various grants from the ALS Association. The corticospinal motor neuron, UMN and cortical projection neuron work of J.D.M. and C.S. was supported by US National Institutes of Health grants R01NS075672, R01NS045523, R01NS049553 and R37NS041590, and by grants from the ALS Association and Spastic Paraplegia Foundation. Work of H.W. and E.L. was also funded in part by Project ALS and Track ALS. Work of J.K. was funded in part by Project ALS. Contributions from S.C.Z. were funded by ALS Association grant 15-IIP-194.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clive N Svendsen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sances, S., Bruijn, L., Chandran, S. et al. Modeling ALS with motor neurons derived from human induced pluripotent stem cells. Nat Neurosci 19, 542–553 (2016). https://doi.org/10.1038/nn.4273

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.4273

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing