Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Functional and structural underpinnings of neuronal assembly formation in learning

Abstract

Learning and memory are associated with the formation and modification of neuronal assemblies: populations of neurons that encode what has been learned and mediate memory retrieval upon recall. Functional studies of neuronal assemblies have progressed dramatically thanks to recent technological advances. Here we discuss how a focus on assembly formation and consolidation has provided a powerful conceptual framework to relate mechanistic studies of synaptic and circuit plasticity to behaviorally relevant aspects of learning and memory. Neurons are likely recruited to particular learning-related assemblies as a function of their relative excitabilities and synaptic activation, followed by selective strengthening of pre-existing synapses, formation of new connections and elimination of outcompeted synapses to ensure memory formation. Mechanistically, these processes involve linking transcription to circuit modification. They include the expression of immediate early genes and specific molecular and cellular events, supported by network-wide activities that are shaped and modulated by local inhibitory microcircuits.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Relationship between neuronal tuning and learning-related assembly formation in hippocampal place cells.
Figure 2: Mechanisms of assembly formation during learning.
Figure 3: Time course of cFos induction upon contextual fear conditioning.
Figure 4: Inhibition and disinhibition as mechanisms to shape memory assembly formation.
Figure 5: Learning-related spine dynamics and their potential effects on neuronal activity and memory.

Similar content being viewed by others

References

  1. Dudai, Y. & Morris, R.G. Memorable trends. Neuron 80, 742–750 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Kandel, E.R., Dudai, Y. & Mayford, M.R. The molecular and systems biology of memory. Cell 157, 163–186 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Reijmers, L.G., Perkins, B.L., Matsuo, N. & Mayford, M. Localization of a stable neural correlate of associative memory. Science 317, 1230–1233 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Silva, A.J., Zhou, Y., Rogerson, T., Shobe, J. & Balaji, J. Molecular and cellular approaches to memory allocation in neural circuits. Science 326, 391–395 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tonegawa, S., Liu, X., Ramirez, S. & Redondo, R. Memory engram cells have come of age. Neuron 87, 918–931 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. Josselyn, S.A., Köhler, S. & Frankland, P.W. Finding the engram. Nat. Rev. Neurosci. 16, 521–534 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Hebb, D.O. The Organization of Behavior: A Neuropsychological Approach (John Wiley & Sons, New York, 1949).

  8. Schacter, D.L., Eich, J.E. & Tulving, E. Richard Semon's theory of memory. J. Verbal Learn. Verbal Behav. 17, 721–743 (1978).

    Article  Google Scholar 

  9. Rogerson, T. et al. Synaptic tagging during memory allocation. Nat. Rev. Neurosci. 15, 157–169 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dragoi, G. & Buzsáki, G. Temporal encoding of place sequences by hippocampal cell assemblies. Neuron 50, 145–157 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Davidson, T.J., Kloosterman, F. & Wilson, M.A. Hippocampal replay of extended experience. Neuron 63, 497–507 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Carr, M.F., Jadhav, S.P. & Frank, L.M. Hippocampal replay in the awake state: a potential substrate for memory consolidation and retrieval. Nat. Neurosci. 14, 147–153 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bendor, D. & Wilson, M.A. Biasing the content of hippocampal replay during sleep. Nat. Neurosci. 15, 1439–1444 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Singer, A.C., Carr, M.F., Karlsson, M.P. & Frank, L.M. Hippocampal SWR activity predicts correct decisions during the initial learning of an alternation task. Neuron 77, 1163–1173 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Buzsáki, G. Hippocampal sharp wave-ripple: A cognitive biomarker for episodic memory and planning. Hippocampus 25, 1073–1188 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Pfeiffer, B.E. & Foster, D.J. Place cells. Autoassociative dynamics in the generation of sequences of hippocampal place cells. Science 349, 180–183 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. de Lavilléon, G., Lacroix, M.M., Rondi-Reig, L. & Benchenane, K. Explicit memory creation during sleep demonstrates a causal role of place cells in navigation. Nat. Neurosci. 18, 493–495 (2015).

    Article  PubMed  CAS  Google Scholar 

  18. Quiroga, R.Q. Concept cells: the building blocks of declarative memory functions. Nat. Rev. Neurosci. 13, 587–597 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Han, J.H. et al. Selective erasure of a fear memory. Science 323, 1492–1496 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Liu, X. et al. Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature 484, 381–385 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Garner, A.R. et al. Generation of a synthetic memory trace. Science 335, 1513–1516 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ramirez, S. et al. Creating a false memory in the hippocampus. Science 341, 387–391 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Kim, J., Kwon, J.T., Kim, H.S., Josselyn, S.A. & Han, J.H. Memory recall and modifications by activating neurons with elevated CREB. Nat. Neurosci. 17, 65–72 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Hsiang, H.L. et al. Manipulating a “cocaine engram” in mice. J. Neurosci. 34, 14115–14127 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Bozon, B. et al. MAPK, CREB and ZIF268 are all required for the consolidation of recognition memory. Phil. Trans. R. Soc. Lond. B 358, 805–814 (2003).

    Article  CAS  Google Scholar 

  26. Plath, N. et al. Arc/Arg3.1 is essential for the consolidation of synaptic plasticity and memories. Neuron 52, 437–444 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Onoue, K., Nakayama, D., Ikegaya, Y., Matsuki, N. & Nomura, H. Fear extinction requires Arc/Arg3.1 expression in the basolateral amygdala. Mol. Brain 7, 30 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Hübener, M. & Bonhoeffer, T. Searching for engrams. Neuron 67, 363–371 (2010).

    Article  PubMed  CAS  Google Scholar 

  29. Flavell, S.W. & Greenberg, M.E. Signaling mechanisms linking neuronal activity to gene expression and plasticity of the nervous system. Annu. Rev. Neurosci. 31, 563–590 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kida, S. et al. CREB required for the stability of new and reactivated fear memories. Nat. Neurosci. 5, 348–355 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Dong, Y. et al. CREB modulates excitability of nucleus accumbens neurons. Nat. Neurosci. 9, 475–477 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Viosca, J., Lopez de Armentia, M., Jancic, D. & Barco, A. Enhanced CREB-dependent gene expression increases the excitability of neurons in the basal amygdala and primes the consolidation of contextual and cued fear memory. Learn. Mem. 16, 193–197 (2009).

    Article  PubMed  Google Scholar 

  33. Zhou, Y. et al. CREB regulates excitability and the allocation of memory to subsets of neurons in the amygdala. Nat. Neurosci. 12, 1438–1443 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Han, J.H. et al. Neuronal competition and selection during memory formation. Science 316, 457–460 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Nomura, H., Nonaka, A., Imamura, N., Hashikawa, K. & Matsuki, N. Memory coding in plastic neuronal subpopulations within the amygdala. Neuroimage 60, 153–161 (2012).

    Article  PubMed  Google Scholar 

  36. Yiu, A.P. et al. Neurons are recruited to a memory trace based on relative neuronal excitability immediately before training. Neuron 83, 722–735 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. Choi, G.B. et al. Driving opposing behaviors with ensembles of piriform neurons. Cell 146, 1004–1015 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gore, F. et al. Neural representations of unconditioned stimuli in basolateral amygdala mediate innate and learned responses. Cell 162, 134–145 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ohkawa, N. et al. Artificial association of pre-stored information to generate a qualitatively new memory. Cell Rep. 11, 261–269 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Dragoi, G. & Tonegawa, S. Preplay of future place cell sequences by hippocampal cellular assemblies. Nature 469, 397–401 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Dragoi, G. & Tonegawa, S. Distinct preplay of multiple novel spatial experiences in the rat. Proc. Natl. Acad. Sci. USA 110, 9100–9105 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Silva, D., Feng, T. & Foster, D.J. Trajectory events across hippocampal place cells require previous experience. Nat. Neurosci. 18, 1772–1779 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Epsztein, J., Brecht, M. & Lee, A.K. Intracellular determinants of hippocampal CA1 place and silent cell activity in a novel environment. Neuron 70, 109–120 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rich, P.D., Liaw, H.P. & Lee, A.K. Place cells. Large environments reveal the statistical structure governing hippocampal representations. Science 345, 814–817 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Grosmark, A.D. & Buzsáki, G. Diversity in neural firing dynamics supports preexisting and experience-dependent hippocampal sequences. Science 351, 1440–1443 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lee, D., Lin, B.J. & Lee, A.K. Hippocampal place fields emerge upon single-cell manipulation of excitability during behavior. Science 337, 849–853 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Thompson, L.T., Moyer, J.R. Jr. & Disterhoft, J.F. Transient changes in excitability of rabbit CA3 neurons with a time course appropriate to support memory consolidation. J. Neurophysiol. 76, 1836–1849 (1996).

    Article  CAS  PubMed  Google Scholar 

  48. Daoudal, G. & Debanne, D. Long-term plasticity of intrinsic excitability: learning rules and mechanisms. Learn. Mem. 10, 456–465 (2003).

    Article  PubMed  Google Scholar 

  49. Katche, C. et al. Delayed wave of c-Fos expression in the dorsal hippocampus involved specifically in persistence of long-term memory storage. Proc. Natl. Acad. Sci. USA 107, 349–354 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Nakayama, D. et al. Long-delayed expression of the immediate early gene Arc/Arg3.1 refines neuronal circuits to perpetuate fear memory. J. Neurosci. 35, 819–830 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Bekinschtein, P. et al. Persistence of long-term memory storage requires a late protein synthesis- and BDNF- dependent phase in the hippocampus. Neuron 53, 261–277 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Katche, C., Cammarota, M. & Medina, J.H. Molecular signatures and mechanisms of long-lasting memory consolidation and storage. Neurobiol. Learn. Mem. 106, 40–47 (2013).

    Article  CAS  PubMed  Google Scholar 

  53. Caroni, P., Chowdhury, A. & Lahr, M. Synapse rearrangements upon learning: from divergent-sparse connectivity to dedicated sub-circuits. Trends Neurosci. 37, 604–614 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. Karunakaran, S. et al. PV plasticity sustained through D1/5 dopamine signaling required for long-term memory consolidation. Nat. Neurosci. 19, 454–464 (2016).

    Article  CAS  PubMed  Google Scholar 

  55. Kastellakis, G., Cai, D.J., Mednick, S.C., Silva, A.J. & Poirazi, P. Synaptic clustering within dendrites: an emerging theory of memory formation. Prog. Neurobiol. 126, 19–35 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Winnubst, J., Cheyne, J.E., Niculescu, D. & Lohmann, C. Spontaneous activity drives local synaptic plasticity in vivo. Neuron 87, 399–410 (2015).

    Article  CAS  PubMed  Google Scholar 

  57. Oh, W.C., Parajuli, L.K. & Zito, K. Heterosynaptic structural plasticity on local dendritic segments of hippocampal CA1 neurons. Cell Rep. 10, 162–169 (2015).

    Article  CAS  PubMed  Google Scholar 

  58. Song, S., Sjöström, P.J., Reigl, M., Nelson, S. & Chklovskii, D.B. Highly nonrandom features of synaptic connectivity in local cortical circuits. PLoS Biol. 3, e68 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Yassin, L. et al. An embedded subnetwork of highly active neurons in the neocortex. Neuron 68, 1043–1050 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Klinshov, V.V., Teramae, J.N., Nekorkin, V.I. & Fukai, T. Dense neuron clustering explains connectivity statistics in cortical microcircuits. PLoS One 9, e94292 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Cossell, L. et al. Functional organization of excitatory synaptic strength in primary visual cortex. Nature 518, 399–403 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mayrhofer, J.M., Haiss, F., Helmchen, F. & Weber, B. Sparse, reliable, and long-term stable representation of periodic whisker deflections in the mouse barrel cortex. Neuroimage 115, 52–63 (2015).

    Article  PubMed  Google Scholar 

  63. Tanaka, K.Z. et al. Cortical representations are reinstated by the hippocampus during memory retrieval. Neuron 84, 347–354 (2014).

    Article  CAS  PubMed  Google Scholar 

  64. Ryan, T.J., Roy, D.S., Pignatelli, M., Arons, A. & Tonegawa, S. Memory. Engram cells retain memory under retrograde amnesia. Science 348, 1007–1013 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sanders, J., Cowansage, K., Baumgärtel, K. & Mayford, M. Elimination of dendritic spines with long-term memory is specific to active circuits. J. Neurosci. 32, 12570–12578 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Middei, S. et al. CREB selectively controls learning-induced structural remodeling of neurons. Learn. Mem. 19, 330–336 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Sargin, D. et al. CREB regulates spine density of lateral amygdala neurons: implications for memory allocation. Front. Behav. Neurosci. 7, 209 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Nonaka, A. et al. Synaptic plasticity associated with a memory engram in the basolateral amygdala. J. Neurosci. 34, 9305–9309 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Harvey, C.D. & Svoboda, K. Locally dynamic synaptic learning rules in pyramidal neuron dendrites. Nature 450, 1195–1200 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Caroni, P., Donato, F. & Muller, D. Structural plasticity upon learning: regulation and functions. Nat. Rev. Neurosci. 13, 478–490 (2012).

    Article  CAS  PubMed  Google Scholar 

  71. Komiyama, T. et al. Learning-related fine-scale specificity imaged in motor cortex circuits of behaving mice. Nature 464, 1182–1186 (2010).

    Article  CAS  PubMed  Google Scholar 

  72. Huber, D. et al. Multiple dynamic representations in the motor cortex during sensorimotor learning. Nature 484, 473–478 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chen, J.L. et al. Pathway-specific reorganization of projection neurons in somatosensory cortex during learning. Nat. Neurosci. 18, 1101–1108 (2015).

    Article  PubMed  CAS  Google Scholar 

  74. Poort, J. et al. Learning enhances sensory and multiple non-sensory representations in primary visual cortex. Neuron 86, 1478–1490 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Peters, A.J., Chen, S.X. & Komiyama, T. Emergence of reproducible spatiotemporal activity during motor learning. Nature 510, 263–267 35 (2014).

    Article  CAS  PubMed  Google Scholar 

  76. Gdalyahu, A. et al. Associative fear learning enhances sparse network coding in primary sensory cortex. Neuron 75, 121–132 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Isaacson, J.S. & Scanziani, M. How inhibition shapes cortical activity. Neuron 72, 231–243 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kepecs, A. & Fishell, G. Interneuron cell types are fit to function. Nature 505, 318–326 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kuhlman, S.J. et al. A disinhibitory microcircuit initiates critical-period plasticity in the visual cortex. Nature 501, 543–546 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Froemke, R.C., Merzenich, M.M. & Schreiner, C.E. A synaptic memory trace for cortical receptive field plasticity. Nature 450, 425–429 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Gambino, F. & Holtmaat, A. Spike-timing-dependent potentiation of sensory surround in the somatosensory cortex is facilitated by deprivation-mediated disinhibition. Neuron 75, 490–502 (2012).

    Article  CAS  PubMed  Google Scholar 

  82. van Versendaal, D. et al. Elimination of inhibitory synapses is a major component of adult ocular dominance plasticity. Neuron 74, 374–383 (2012).

    Article  CAS  PubMed  Google Scholar 

  83. Chen, J.L. et al. Clustered dynamics of inhibitory synapses and dendritic spines in the adult neocortex. Neuron 74, 361–373 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Shao, Y.R. et al. Plasticity of recurrent L2/3 inhibition and gamma oscillations by whisker experience. Neuron 80, 210–222 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Fu, Y., Kaneko, M., Tang, Y., Alvarez-Buylla, A. & Stryker, M.P. A cortical disinhibitory circuit for enhancing adult plasticity. Elife 4, e05558 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Letzkus, J.J. et al. A disinhibitory microcircuit for associative fear learning in the auditory cortex. Nature 480, 331–335 (2011).

    Article  CAS  PubMed  Google Scholar 

  87. Donato, F., Rompani, S.B. & Caroni, P. Parvalbumin-expressing basket-cell network plasticity induced by experience regulates adult learning. Nature 504, 272–276 (2013).

    Article  CAS  PubMed  Google Scholar 

  88. Wolff, S.B. et al. Amygdala interneuron subtypes control fear learning through disinhibition. Nature 509, 453–458 (2014).

    Article  CAS  PubMed  Google Scholar 

  89. Makino, H. & Komiyama, T. Learning enhances the relative impact of top-down processing in the visual cortex. Nat. Neurosci. 18, 1116–1122 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Cichon, J. & Gan, W.B. Branch-specific dendritic Ca(2+) spikes cause persistent synaptic plasticity. Nature 520, 180–185 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Chen, S.X., Kim, A.N., Peters, A.J. & Komiyama, T. Subtype-specific plasticity of inhibitory circuits in motor cortex during motor learning. Nat. Neurosci. 18, 1109–1115 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Dávid, C., Schleicher, A., Zuschratter, W. & Staiger, J.F. The innervation of parvalbumin-containing interneurons by VIP-immunopositive interneurons in the primary somatosensory cortex of the adult rat. Eur. J. Neurosci. 25, 2329–2340 (2007).

    Article  PubMed  Google Scholar 

  93. Hangya, B., Ranade, S.P., Lorenc, M. & Kepecs, A. Central cholinergic neurons are rapidly recruited by reinforcement feedback. Cell 162, 1155–1168 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hu, H., Gan, J. & Jonas, P. Interneurons. Fast-spiking, parvalbumin+ GABAergic interneurons: from cellular design to microcircuit function. Science 345, 1255263 (2014).

    Article  PubMed  CAS  Google Scholar 

  95. Stark, E., Roux, L., Eichler, R. & Buzsáki, G. Local generation of multineuronal spike sequences in the hippocampal CA1 region. Proc. Natl. Acad. Sci. USA 112, 10521–10526 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Donato, F., Chowdhury, A., Lahr, M. & Caroni, P. Early- and late-born parvalbumin basket cell subpopulations exhibiting distinct regulation and roles in learning. Neuron 85, 770–786 (2015).

    Article  CAS  PubMed  Google Scholar 

  97. Ruediger, S. et al. Learning-related feedforward inhibitory connectivity growth required for memory precision. Nature 473, 514–518 10 (2011).

    Article  CAS  PubMed  Google Scholar 

  98. Lovett-Barron, M. et al. Dendritic inhibition in the hippocampus supports fear learning. Science 343, 857–863 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Stefanelli, T., Bertollini, C., Lüscher, C., Muller, D. & Mendez, P. Hippocampal somatostatin interneurons control the size of neuronal memory ensembles. Neuron 89, 1074–1085 (2016).

    Article  CAS  PubMed  Google Scholar 

  100. Kessels, H.W. & Malinow, R. Synaptic AMPA receptor plasticity and behavior. Neuron 61, 340–350 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Makino, H. & Malinow, R. Compartmentalized versus global synaptic plasticity on dendrites controlled by experience. Neuron 72, 1001–1011 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Zhang, Y., Cudmore, R.H., Lin, D.T., Linden, D.J. & Huganir, R.L. Visualization of NMDA receptor-dependent AMPA receptor synaptic plasticity in vivo. Nat. Neurosci. 18, 402–407 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Rumpel, S., LeDoux, J., Zador, A. & Malinow, R. Postsynaptic receptor trafficking underlying a form of associative learning. Science 308, 83–88 (2005).

    Article  CAS  PubMed  Google Scholar 

  104. Mitsushima, D., Ishihara, K., Sano, A., Kessels, H.W. & Takahashi, T. Contextual learning requires synaptic AMPA receptor delivery in the hippocampus. Proc. Natl. Acad. Sci. USA 108, 12503–12508 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Nabavi, S. et al. Engineering a memory with LTD and LTP. Nature 511, 348–352 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Markram, H., Gerstner, W. & Sjöström, P.J. Spike-timing-dependent plasticity: a comprehensive overview. Front. Synaptic Neurosci. 4, 2 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Palm, G., Knoblauch, A., Hauser, F. & Schüz, A. Cell assemblies in the cerebral cortex. Biol. Cybern. 108, 559–572 (2014).

    Article  PubMed  Google Scholar 

  108. Golding, N.L., Staff, N.P. & Spruston, N. Dendritic spikes as a mechanism for cooperative long-term potentiation. Nature 418, 326–331 (2002).

    Article  CAS  PubMed  Google Scholar 

  109. Brandalise, F. & Gerber, U. Mossy fiber-evoked subthreshold responses induce timing-dependent plasticity at hippocampal CA3 recurrent synapses. Proc. Natl. Acad. Sci. USA 111, 4303–4308 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Gambino, F. et al. Sensory-evoked LTP driven by dendritic plateau potentials in vivo. Nature 515, 116–119 (2014).

    Article  CAS  PubMed  Google Scholar 

  111. van Rheede, J.J., Richards, B.A. & Akerman, C.J. Sensory-evoked spiking behavior emerges via an experience-dependent plasticity mechanism. Neuron 87, 1050–1062 (2015).

    Article  CAS  PubMed  Google Scholar 

  112. Larkum, M. A cellular mechanism for cortical associations: an organizing principle for the cerebral cortex. Trends Neurosci. 36, 141–151 (2013).

    Article  CAS  PubMed  Google Scholar 

  113. Braitenberg, V. & Schüz, A. Cortex: Statistics and Geometry of Neuronal Connectivity (Springer, Berlin, New York, 1998).

  114. Stepanyants, A., Tamás, G. & Chklovskii, D.B. Class-specific features of neuronal wiring. Neuron 43, 251–259 (2004).

    Article  CAS  PubMed  Google Scholar 

  115. Ko, H. et al. Functional specificity of local synaptic connections in neocortical networks. Nature 473, 87–91 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Chklovskii, D.B., Mel, B.W. & Svoboda, K. Cortical rewiring and information storage. Nature 431, 782–788 (2004).

    Article  CAS  PubMed  Google Scholar 

  117. Hill, T.C. & Zito, K. LTP-induced long-term stabilization of individual nascent dendritic spines. J. Neurosci. 33, 678–686 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Trachtenberg, J.T. et al. Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature 420, 788–794 (2002).

    Article  CAS  PubMed  Google Scholar 

  119. Holtmaat, A.J. et al. Transient and persistent dendritic spines in the neocortex in vivo. Neuron 45, 279–291 (2005).

    Article  CAS  PubMed  Google Scholar 

  120. Zuo, Y., Lin, A., Chang, P. & Gan, W.B. Development of long-term dendritic spine stability in diverse regions of cerebral cortex. Neuron 46, 181–189 (2005).

    Article  CAS  PubMed  Google Scholar 

  121. Majewska, A.K., Newton, J.R. & Sur, M. Remodeling of synaptic structure in sensory cortical areas in vivo. J. Neurosci. 26, 3021–3029 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. De Paola, V. et al. Cell type-specific structural plasticity of axonal branches and boutons in the adult neocortex. Neuron 49, 861–875 (2006).

    Article  CAS  PubMed  Google Scholar 

  123. Mostany, R. et al. Altered synaptic dynamics during normal brain aging. J. Neurosci. 33, 4094–4104 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Grillo, F.W. et al. Increased axonal bouton dynamics in the aging mouse cortex. Proc. Natl. Acad. Sci. USA 110, E1514–E1523 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Cane, M., Maco, B., Knott, G. & Holtmaat, A. The relationship between PSD-95 clustering and spine stability in vivo. J. Neurosci. 34, 2075–2086 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Attardo, A., Fitzgerald, J.E. & Schnitzer, M.J. Impermanence of dendritic spines in live adult CA1 hippocampus. Nature 523, 592–596 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Holtmaat, A. & Svoboda, K. Experience-dependent structural synaptic plasticity in the mammalian brain. Nat. Rev. Neurosci. 10, 647–658 (2009).

    Article  CAS  PubMed  Google Scholar 

  128. Holtmaat, A., Wilbrecht, L., Knott, G.W., Welker, E. & Svoboda, K. Experience-dependent and cell-type-specific spine growth in the neocortex. Nature 441, 979–983 (2006).

    Article  CAS  PubMed  Google Scholar 

  129. Keck, T. et al. Massive restructuring of neuronal circuits during functional reorganization of adult visual cortex. Nat. Neurosci. 11, 1162–1167 (2008).

    Article  CAS  PubMed  Google Scholar 

  130. Hofer, S.B., Mrsic-Flogel, T.D., Bonhoeffer, T. & Hübener, M. Experience leaves a lasting structural trace in cortical circuits. Nature 457, 313–317 (2009).

    Article  CAS  PubMed  Google Scholar 

  131. Zuo, Y., Yang, G., Kwon, E. & Gan, W.B. Long-term sensory deprivation prevents dendritic spine loss in primary somatosensory cortex. Nature 436, 261–265 (2005).

    Article  CAS  PubMed  Google Scholar 

  132. Yang, G., Pan, F. & Gan, W.B. Stably maintained dendritic spines are associated with lifelong memories. Nature 462, 920–924 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Schubert, V., Lebrecht, D. & Holtmaat, A. Peripheral deafferentation-driven functional somatosensory map shifts are associated with local, not large-scale dendritic structural plasticity. J. Neurosci. 33, 9474–9487 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Ma, L. et al. Experience-dependent plasticity of dendritic spines of layer 2/3 pyramidal neurons in the mouse cortex. Dev. Neurobiol. 76, 277–286 (2016).

    Article  PubMed  Google Scholar 

  135. Tschida, K.A. & Mooney, R. Deafening drives cell-type-specific changes to dendritic spines in a sensorimotor nucleus important to learned vocalizations. Neuron 73, 1028–1039 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Xu, T. et al. Rapid formation and selective stabilization of synapses for enduring motor memories. Nature 462, 915–919 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Fu, M., Yu, X., Lu, J. & Zuo, Y. Repetitive motor learning induces coordinated formation of clustered dendritic spines in vivo. Nature 483, 92–95 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Yang, G. et al. Sleep promotes branch-specific formation of dendritic spines after learning. Science 344, 1173–1178 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Hayashi-Takagi, A. et al. Labelling and optical erasure of synaptic memory traces in the motor cortex. Nature 525, 333–338 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Kuhlman, S.J., O'Connor, D.H., Fox, K. & Svoboda, K. Structural plasticity within the barrel cortex during initial phases of whisker-dependent learning. J. Neurosci. 34, 6078–6083 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Roberts, T.F., Tschida, K.A., Klein, M.E. & Mooney, R. Rapid spine stabilization and synaptic enhancement at the onset of behavioural learning. Nature 463, 948–952 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Oh, W.C., Hill, T.C. & Zito, K. Synapse-specific and size-dependent mechanisms of spine structural plasticity accompanying synaptic weakening. Proc. Natl. Acad. Sci. USA 110, E305–E312 (2013).

    Article  CAS  PubMed  Google Scholar 

  143. Wiegert, J.S. & Oertner, T.G. Long-term depression triggers the selective elimination of weakly integrated synapses. Proc. Natl. Acad. Sci. USA 110, E4510–E4519 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Lai, C.S., Franke, T.F. & Gan, W.B. Opposite effects of fear conditioning and extinction on dendritic spine remodelling. Nature 483, 87–91 (2012).

    Article  CAS  PubMed  Google Scholar 

  145. Moczulska, K.E. et al. Dynamics of dendritic spines in the mouse auditory cortex during memory formation and memory recall. Proc. Natl. Acad. Sci. USA 110, 18315–18320 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Muñoz-Cuevas, F.J., Athilingam, J., Piscopo, D. & Wilbrecht, L. Cocaine-induced structural plasticity in frontal cortex correlates with conditioned place preference. Nat. Neurosci. 16, 1367–1369 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Joachimsthaler, B., Brugger, D., Skodras, A. & Schwarz, C. Spine loss in primary somatosensory cortex during trace eyeblink conditioning. J. Neurosci. 35, 3772–3781 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Lisman, J. & Morris, R.G. Memory. Why is the cortex a slow learner? Nature 411, 248–249 (2001).

    Article  CAS  PubMed  Google Scholar 

  149. Wilbrecht, L., Holtmaat, A., Wright, N., Fox, K. & Svoboda, K. Structural plasticity underlies experience-dependent functional plasticity of cortical circuits. J. Neurosci. 30, 4927–4932 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank S. Arber, H. Kessels and K. Zito for their input and comments on the manuscript. Our work is financially supported by the National Centre of Competence in Research (NCCR) SYNAPSY and financed by the Swiss National Science Foundation (51AU40_125759, A.H., P.C.), a Swiss National Science Foundation project grant (31003A_153448, A.H.), the International Foundation for Research on Paraplegia (A.H.) and the Hans Wilsdorf Foundation (A.H.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anthony Holtmaat or Pico Caroni.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holtmaat, A., Caroni, P. Functional and structural underpinnings of neuronal assembly formation in learning. Nat Neurosci 19, 1553–1562 (2016). https://doi.org/10.1038/nn.4418

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.4418

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing