Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of microglia and macrophages in glioma maintenance and progression

Abstract

There is a growing recognition that gliomas are complex tumors composed of neoplastic and non-neoplastic cells, which each individually contribute to cancer formation, progression and response to treatment. The majority of the non-neoplastic cells are tumor-associated macrophages (TAMs), either of peripheral origin or representing brain-intrinsic microglia, that create a supportive stroma for neoplastic cell expansion and invasion. TAMs are recruited to the glioma environment, have immune functions, and can release a wide array of growth factors and cytokines in response to those factors produced by cancer cells. In this manner, TAMs facilitate tumor proliferation, survival and migration. Through such iterative interactions, a unique tumor ecosystem is established, which offers new opportunities for therapeutic targeting.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Microglia and monocytes have distinct cellular origins.
Figure 2: Microglia and monocytes converge in high-grade glioma (HGG).
Figure 3: M1/M2 profile of TMAs.
Figure 4: Glioma cells release several factors, which attract TAMs to the tumor tissue.
Figure 5: TAM glioma crosstalk.
Figure 6: Illustration of the complexity and cellular composition of glioma.

Similar content being viewed by others

References

  1. Gutmann, D.H. et al. Somatic neurofibromatosis type 1 (NF1) inactivation characterizes NF1-associated pilocytic astrocytoma. Genome Res. 23, 431–439 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Simmons, G.W. et al. Neurofibromatosis-1 heterozygosity increases microglia in a spatially and temporally restricted pattern relevant to mouse optic glioma formation and growth. J. Neuropathol. Exp. Neurol. 70, 51–62 (2011).

    CAS  PubMed  Google Scholar 

  3. Morantz, R.A., Wood, G.W., Foster, M., Clark, M. & Gollahon, K. Macrophages in experimental and human brain tumors. Part 2: studies of the macrophage content of human brain tumors. J. Neurosurg. 50, 305–311 (1979).

    CAS  PubMed  Google Scholar 

  4. Rossi, M.L., Hughes, J.T., Esiri, M.M., Coakham, H.B. & Brownell, D.B. Immunohistological study of mononuclear cell infiltrate in malignant gliomas. Acta Neuropathol. 74, 269–277 (1987).

    CAS  PubMed  Google Scholar 

  5. Hortega, P.D.R. El tercer elemento de los centros nerviosos. Bol. Soc. Esp. d. Biol. 9, 69–120 (1919).

    Google Scholar 

  6. Ling, E.A. & Wong, W.C. The origin and nature of ramified and amoeboid microglia: a historical review and current concepts. Glia 7, 9–18 (1993).

    CAS  PubMed  Google Scholar 

  7. Biffi, A. et al. Correction of metachromatic leukodystrophy in the mouse model by transplantation of genetically modified hematopoietic stem cells. J. Clin. Invest. 113, 1118–1129 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Simard, A.R. & Rivest, S. Bone marrow stem cells have the ability to populate the entire central nervous system into fully differentiated parenchymal microglia. FASEB J. 18, 998–1000 (2004).

    CAS  PubMed  Google Scholar 

  9. Priller, J. et al. Targeting gene-modified hematopoietic cells to the central nervous system: use of green fluorescent protein uncovers microglial engraftment. Nat. Med. 7, 1356–1361 (2001).

    CAS  PubMed  Google Scholar 

  10. Flügel, A., Bradl, M., Kreutzberg, G.W. & Graeber, M.B. Transformation of donor-derived bone marrow precursors into host microglia during autoimmune CNS inflammation and during the retrograde response to axotomy. J. Neurosci. Res. 66, 74–82 (2001).

    PubMed  Google Scholar 

  11. Hickey, W.F. & Kimura, H. Perivascular microglial cells of the CNS are bone marrow–derived and present antigen in vivo. Science 239, 290–292 (1988).

    CAS  PubMed  Google Scholar 

  12. Massengale, M., Wagers, A.J., Vogel, H. & Weissman, I.L. Hematopoietic cells maintain hematopoietic fates upon entering the brain. J. Exp. Med. 201, 1579–1589 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Ajami, B., Bennett, J.L., Krieger, C., Tetzlaff, W. & Rossi, F.M. Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat. Neurosci. 10, 1538–1543 (2007).

    CAS  PubMed  Google Scholar 

  14. Ajami, B., Bennett, J.L., Krieger, C., McNagny, K.M. & Rossi, F.M. Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool. Nat. Neurosci. 14, 1142–1149 (2011).

    CAS  PubMed  Google Scholar 

  15. Ginhoux, F. et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330, 841–845 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Kierdorf, K. et al. Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nat. Neurosci. 16, 273–280 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Elmore, M.R. et al. Colony-stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain. Neuron 82, 380–397 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Shi, C. & Pamer, E.G. Monocyte recruitment during infection and inflammation. Nat. Rev. Immunol. 11, 762–774 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Geissmann, F., Jung, S. & Littman, D.R. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19, 71–82 (2003).

    CAS  PubMed  Google Scholar 

  20. Yona, S. et al. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 38, 79–91 (2013).

    CAS  PubMed  Google Scholar 

  21. Badie, B. & Schartner, J.M. Flow cytometric characterization of tumor-associated macrophages in experimental gliomas. Neurosurgery 46, 957–961; discussion 961–962 (2000).

    CAS  PubMed  Google Scholar 

  22. Parney, I.F., Waldron, J.S. & Parsa, A.T. Flow cytometry and in vitro analysis of human glioma-associated macrophages. Laboratory investigation. J. Neurosurg. 110, 572–582 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Muller, A., Brandenburg, S., Turkowski, K., Muller, S. & Vajkoczy, P. Resident microglia, and not peripheral macrophages, are the main source of brain tumor mononuclear cells. Int. J. Cancer 137, 278–288 (2014).

    PubMed  Google Scholar 

  24. Zhou, W. et al. Periostin secreted by glioblastoma stem cells recruits M2 tumour-associated macrophages and promotes malignant growth. Nat. Cell Biol. 17, 170–182 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Feng, X. et al. Loss of CX3CR1 increases accumulation of inflammatory monocytes and promotes gliomagenesis. Oncotarget 6, 15077–15094 (2015).

    PubMed  PubMed Central  Google Scholar 

  26. Yang, I., Han, S.J., Sughrue, M.E., Tihan, T. & Parsa, A.T. Immune cell infiltrate differences in pilocytic astrocytoma and glioblastoma: evidence of distinct immunological microenvironments that reflect tumor biology. J. Neurosurg. 115, 505–511 (2011).

    CAS  PubMed  Google Scholar 

  27. Klein, R. & Roggendorf, W. Increased microglia proliferation separates pilocytic astrocytomas from diffuse astrocytomas: a double labeling study. Acta Neuropathol. 101, 245–248 (2001).

    CAS  PubMed  Google Scholar 

  28. Komohara, Y., Ohnishi, K., Kuratsu, J. & Takeya, M. Possible involvement of the M2 anti-inflammatory macrophage phenotype in growth of human gliomas. J. Pathol. 216, 15–24 (2008).

    CAS  PubMed  Google Scholar 

  29. Dorward, I.G. et al. Postoperative imaging surveillance in pediatric pilocytic astrocytomas. J. Neurosurg. Pediatr. 6, 346–352 (2010).

    PubMed  Google Scholar 

  30. Bajenaru, M.L. et al. Optic nerve glioma in mice requires astrocyte Nf1 gene inactivation and Nf1 brain heterozygosity. Cancer Res. 63, 8573–8577 (2003).

    CAS  PubMed  Google Scholar 

  31. Listernick, R., Charrow, J., Greenwald, M.J. & Esterly, N.B. Optic gliomas in children with neurofibromatosis type 1. J. Pediatr. 114, 788–792 (1989).

    CAS  PubMed  Google Scholar 

  32. Kim, K.Y., Ju, W.K., Hegedus, B., Gutmann, D.H. & Ellisman, M.H. Ultrastructural characterization of the optic pathway in a mouse model of neurofibromatosis-1 optic glioma. Neuroscience 170, 178–188 (2010).

    CAS  PubMed  Google Scholar 

  33. Pong, W.W., Higer, S.B., Gianino, S.M., Emnett, R.J. & Gutmann, D.H. Reduced microglial CX3CR1 expression delays neurofibromatosis-1 glioma formation. Ann. Neurol. 73, 303–308 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Bajenaru, M.L., Garbow, J.R., Perry, A., Hernandez, M.R. & Gutmann, D.H. Natural history of neurofibromatosis 1-associated optic nerve glioma in mice. Ann. Neurol. 57, 119–127 (2005).

    CAS  PubMed  Google Scholar 

  35. Daginakatte, G.C. & Gutmann, D.H. Neurofibromatosis-1 (Nf1) heterozygous brain microglia elaborate paracrine factors that promote Nf1-deficient astrocyte and glioma growth. Hum. Mol. Genet. 16, 1098–1112 (2007).

    CAS  PubMed  Google Scholar 

  36. Daginakatte, G.C., Gianino, S.M., Zhao, N.W., Parsadanian, A.S. & Gutmann, D.H. Increased c-Jun-NH2-kinase signaling in neurofibromatosis-1 heterozygous microglia drives microglia activation and promotes optic glioma proliferation. Cancer Res. 68, 10358–10366 (2008).

    CAS  PubMed  Google Scholar 

  37. Prada, C.E. et al. Neurofibroma-associated macrophages play roles in tumor growth and response to pharmacological inhibition. Acta Neuropathol. 125, 159–168 (2013).

    CAS  PubMed  Google Scholar 

  38. Yang, F.C. et al. Nf1-dependent tumors require a microenvironment containing Nf1+/– and c-kit–dependent bone marrow. Cell 135, 437–448 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Warrington, N.M. et al. Spatiotemporal differences in CXCL12 expression and cyclic AMP underlie the unique pattern of optic glioma growth in neurofibromatosis type 1. Cancer Res. 67, 8588–8595 (2007).

    CAS  PubMed  Google Scholar 

  40. Warrington, N.M. et al. Cyclic AMP suppression is sufficient to induce gliomagenesis in a mouse model of neurofibromatosis-1. Cancer Res. 70, 5717–5727 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Solga, A.C. et al. RNA-sequencing reveals oligodendrocyte and neuronal transcripts in microglia relevant to central nervous system disease. Glia 63, 531–548 (2014).

    PubMed  PubMed Central  Google Scholar 

  42. Solga, A.C. et al. RNA-sequencing of tumor-associated microglia reveals Ccl5 as a stromal chemokine critical for neurofibromatosis-1 glioma growth. Neoplasia. 17, 777–788 (2015).

    Google Scholar 

  43. Mantovani, A., Sozzani, S., Locati, M., Allavena, P. & Sica, A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 23, 549–555 (2002).

    CAS  PubMed  Google Scholar 

  44. Mantovani, A. et al. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 25, 677–686 (2004).

    CAS  PubMed  Google Scholar 

  45. Kennedy, B.C. et al. Tumor-associated macrophages in glioma: friend or foe? J. Oncol. 2013, 486912 (2013).

    PubMed  PubMed Central  Google Scholar 

  46. Gabrusiewicz, K. et al. Characteristics of the alternative phenotype of microglia/macrophages and its modulation in experimental gliomas. PLoS One 6, e23902 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Kees, T. et al. Microglia isolated from patients with glioma gain antitumor activities on poly (I:C) stimulation. Neuro-oncol. 14, 64–78 (2012).

    CAS  PubMed  Google Scholar 

  48. Umemura, N. et al. Tumor-infiltrating myeloid-derived suppressor cells are pleiotropic-inflamed monocytes/macrophages that bear M1- and M2-type characteristics. J. Leukoc. Biol. 83, 1136–1144 (2008).

    CAS  PubMed  Google Scholar 

  49. Li, W. & Graeber, M.B. The molecular profile of microglia under the influence of glioma. Neuro-oncol. 14, 958–978 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Markovic, D.S. et al. Gliomas induce and exploit microglial MT1-MMP expression for tumor expansion. Proc. Natl. Acad. Sci. USA 106, 12530–12535 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Sica, A., Schioppa, T., Mantovani, A. & Allavena, P. Tumour-associated macrophages are a distinct M2 polarized population promoting tumour progression: potential targets of anti-cancer therapy. Eur. J. Cancer 42, 717–727 (2006).

    CAS  PubMed  Google Scholar 

  52. Ye, X.Z. et al. Tumor-associated microglia/macrophages enhance the invasion of glioma stem-like cells via TGF-β1 signaling pathway. J. Immunol. 189, 444–453 (2012).

    CAS  PubMed  Google Scholar 

  53. Szulzewsky, F. et al. Glioma-associated microglia/macrophages display an expression profile different from M1 and M2 polarization and highly express Gpnmb and Spp1. PLoS One 10, e0116644 (2015).

    PubMed  PubMed Central  Google Scholar 

  54. Zeiner, P.S. et al. MIF receptor CD74 is restricted to microglia/macrophages, associated with a M1-polarized immune milieu and prolonged patient survival in gliomas. Brain Pathol. 25, 491–504 (2014).

    PubMed  PubMed Central  Google Scholar 

  55. Pong, W.W. et al. F11R is a novel monocyte prognostic biomarker for malignant glioma. PLoS One 8, e77571 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Pyonteck, S.M. et al. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat. Med. 19, 1264–1272 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Lisi, L., Laudati, E., Navarra, P. & Dello Russo, C. The mTOR kinase inhibitors polarize glioma-activated microglia to express a M1 phenotype. J. Neuroinflammation 11, 125 (2014).

    PubMed  PubMed Central  Google Scholar 

  58. Qin, T. et al. Dopamine induces growth inhibition and vascular normalization through reprogramming M2-polarized macrophages in rat C6 glioma. Toxicol. Appl. Pharmacol. 286, 112–123 (2015).

    CAS  PubMed  Google Scholar 

  59. Xu, S. et al. Effect of miR-142-3p on the M2 macrophage and therapeutic efficacy against murine glioblastoma. J. Natl. Cancer Inst. 106, dju162 (2014).

    PubMed  PubMed Central  Google Scholar 

  60. Platten, M. et al. Monocyte chemoattractant protein-1 increases microglial infiltration and aggressiveness of gliomas. Ann. Neurol. 54, 388–392 (2003).

    CAS  PubMed  Google Scholar 

  61. Okada, M. et al. Tumor-associated macrophage/microglia infiltration in human gliomas is correlated with MCP-3, but not MCP-1. Int. J. Oncol. 34, 1621–1627 (2009).

    CAS  PubMed  Google Scholar 

  62. Badie, B., Schartner, J., Klaver, J. & Vorpahl, J. In vitro modulation of microglia motility by glioma cells is mediated by hepatocyte growth factor/scatter factor. Neurosurgery 44, 1077–1082; discussion 1082–1083 (1999).

    CAS  PubMed  Google Scholar 

  63. Wang, S.C., Hong, J.H., Hsueh, C. & Chiang, C.S. Tumor-secreted SDF-1 promotes glioma invasiveness and TAM tropism toward hypoxia in a murine astrocytoma model. Lab. Invest. 92, 151–162 (2012).

    CAS  PubMed  Google Scholar 

  64. Paolicelli, R.C., Bisht, K. & Tremblay, M.E. Fractalkine regulation of microglial physiology and consequences on the brain and behavior. Front. Cell. Neurosci. 8, 129 (2014).

    PubMed  PubMed Central  Google Scholar 

  65. Liu, C., Luo, D., Streit, W.J. & Harrison, J.K. CX3CL1 and CX3CR1 in the GL261 murine model of glioma: CX3CR1 deficiency does not impact tumor growth or infiltration of microglia and lymphocytes. J. Neuroimmunol. 198, 98–105 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Rodero, M. et al. Polymorphism in the microglial cell-mobilizing CX3CR1 gene is associated with survival in patients with glioblastoma. J. Clin. Oncol. 26, 5957–5964 (2008).

    PubMed  Google Scholar 

  67. Ku, M.C. et al. GDNF mediates glioblastoma-induced microglia attraction but not astrogliosis. Acta Neuropathol. 125, 609–620 (2013).

    CAS  PubMed  Google Scholar 

  68. Coniglio, S.J. et al. Microglial stimulation of glioblastoma invasion involves epidermal growth factor receptor (EGFR) and colony stimulating factor 1 receptor (CSF-1R) signaling. Mol. Med. 18, 519–527 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Sielska, M. et al. Distinct roles of CSF family cytokines in macrophage infiltration and activation in glioma progression and injury response. J. Pathol. 230, 310–321 (2013).

    CAS  PubMed  Google Scholar 

  70. Bettinger, I., Thanos, S. & Paulus, W. Microglia promote glioma migration. Acta Neuropathol. 103, 351–355 (2002).

    PubMed  Google Scholar 

  71. Markovic, D.S., Glass, R., Synowitz, M., Rooijen, Nv. & Kettenmann, H. Microglia stimulate the invasiveness of glioma cells by increasing the activity of metalloprotease-2. J. Neuropathol. Exp. Neurol. 64, 754–762 (2005).

    CAS  PubMed  Google Scholar 

  72. Carvalho da Fonseca, A.C. et al. Increased expression of stress inducible protein 1 in glioma-associated microglia/macrophages. J. Neuroimmunol. 274, 71–77 (2014).

    CAS  PubMed  Google Scholar 

  73. Zhang, J. et al. A dialog between glioma and microglia that promotes tumor invasiveness through the CCL2/CCR2/interleukin-6 axis. Carcinogenesis 33, 312–319 (2012).

    CAS  PubMed  Google Scholar 

  74. Saederup, N. et al. Selective chemokine receptor usage by central nervous system myeloid cells in CCR2-red fluorescent protein knock-in mice. PLoS One 5, e13693 (2010).

    PubMed  PubMed Central  Google Scholar 

  75. Mizutani, M. et al. The fractalkine receptor but not CCR2 is present on microglia from embryonic development throughout adulthood. J. Immunol. 188, 29–36 (2012).

    CAS  PubMed  Google Scholar 

  76. Wick, W., Platten, M. & Weller, M. Glioma cell invasion: regulation of metalloproteinase activity by TGF-beta. J. Neurooncol. 53, 177–185 (2001).

    CAS  PubMed  Google Scholar 

  77. Wesolowska, A. et al. Microglia-derived TGF-beta as an important regulator of glioblastoma invasion—an inhibition of TGF-beta-dependent effects by shRNA against human TGF-beta type II receptor. Oncogene 27, 918–930 (2008).

    CAS  PubMed  Google Scholar 

  78. Lehnardt, S. Innate immunity and neuroinflammation in the CNS: the role of microglia in Toll-like receptor–mediated neuronal injury. Glia 58, 253–263 (2010).

    PubMed  Google Scholar 

  79. Vinnakota, K. et al. Toll-like receptor 2 mediates microglia/brain macrophage MT1-MMP expression and glioma expansion. Neuro-oncol. 15, 1457–1468 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Hu, F. et al. Glioma-derived versican promotes tumor expansion via glioma-associated microglial/macrophages Toll-like receptor 2 signaling. Neuro-oncol. 17, 200–210 (2015).

    CAS  PubMed  Google Scholar 

  81. Hu, F. et al. Glioma-associated microglial MMP9 expression is upregulated by TLR2 signaling and sensitive to minocycline. Int. J. Cancer 135, 2569–2578 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Chen, X. et al. RAGE expression in tumor-associated macrophages promotes angiogenesis in glioma. Cancer Res. 74, 7285–7297 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Bao, S. et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444, 756–760 (2006).

    CAS  PubMed  Google Scholar 

  84. Hambardzumyan, D., Squatrito, M. & Holland, E.C. Radiation resistance and stem-like cells in brain tumors. Cancer Cell 10, 454–456 (2006).

    CAS  PubMed  Google Scholar 

  85. Bleau, A.M. et al. PTEN/PI3K/Akt pathway regulates the side population phenotype and ABCG2 activity in glioma tumor stem-like cells. Cell Stem Cell 4, 226–235 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Yi, L. et al. Glioma-initiating cells: a predominant role in microglia/macrophages tropism to glioma. J. Neuroimmunol. 232, 75–82 (2011).

    CAS  PubMed  Google Scholar 

  87. Sarkar, S. et al. Therapeutic activation of macrophages and microglia to suppress brain tumor-initiating cells. Nat. Neurosci. 17, 46–55 (2014).

    CAS  PubMed  Google Scholar 

  88. Wu, A. et al. Glioma cancer stem cells induce immunosuppressive macrophages/microglia. Neuro-oncol. 12, 1113–1125 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Hoelzinger, D.B., Demuth, T. & Berens, M.E. Autocrine factors that sustain glioma invasion and paracrine biology in the brain microenvironment. J. Natl. Cancer Inst. 99, 1583–1593 (2007).

    CAS  PubMed  Google Scholar 

  90. Kioi, M. et al. Inhibition of vasculogenesis, but not angiogenesis, prevents the recurrence of glioblastoma after irradiation in mice. J. Clin. Invest. 120, 694–705 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Wang, S.C., Yu, C.F., Hong, J.H., Tsai, C.S. & Chiang, C.S. Radiation therapy-induced tumor invasiveness is associated with SDF-1-regulated macrophage mobilization and vasculogenesis. PLoS One 8, e69182 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Lu-Emerson, C. et al. Increase in tumor-associated macrophages after antiangiogenic therapy is associated with poor survival among patients with recurrent glioblastoma. Neuro-oncol. 15, 1079–1087 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Piao, Y. et al. Glioblastoma resistance to anti-VEGF therapy is associated with myeloid cell infiltration, stem cell accumulation, and a mesenchymal phenotype. Neuro-oncol. 14, 1379–1392 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Zhang, L. et al. Stat3 inhibition activates tumor macrophages and abrogates glioma growth in mice. Glia 57, 1458–1467 (2009).

    PubMed  Google Scholar 

  95. Frazier, J.L. et al. Local delivery of minocycline and systemic BCNU have synergistic activity in the treatment of intracranial glioma. J. Neurooncol. 64, 203–209 (2003).

    PubMed  Google Scholar 

  96. Poli, A. et al. Targeting glioblastoma with NK cells and mAb against NG2/CSPG4 prolongs animal survival. Oncotarget 4, 1527–1546 (2013).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank D. Schumick for his great work with illustrations. This work was supported by the Deutsche Forschungsgemeinschaft (TR 43, KE 329/30-1; H.K.) and Neurocure (H.K.) as well as funding from the Department of Defense (W81XWH-13-1-0094, D.H.G.) and James S. McDonnell Foundation (D.H.G.) and a collaborative U01 grant from the National Cancer Institute (U01-CA160882; D.H., D.H.G. and H.K.).

Author information

Authors and Affiliations

Authors

Contributions

D.H., D.H.G. and H.K. wrote and edited the manuscript.

Corresponding author

Correspondence to Helmut Kettenmann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hambardzumyan, D., Gutmann, D. & Kettenmann, H. The role of microglia and macrophages in glioma maintenance and progression. Nat Neurosci 19, 20–27 (2016). https://doi.org/10.1038/nn.4185

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.4185

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer