Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hippocampal circuit dysfunction in the Tc1 mouse model of Down syndrome

Abstract

Hippocampal pathology is likely to contribute to cognitive disability in Down syndrome, yet the neural network basis of this pathology and its contributions to different facets of cognitive impairment remain unclear. Here we report dysfunctional connectivity between dentate gyrus and CA3 networks in the transchromosomic Tc1 mouse model of Down syndrome, demonstrating that ultrastructural abnormalities and impaired short-term plasticity at dentate gyrus–CA3 excitatory synapses culminate in impaired coding of new spatial information in CA3 and CA1 and disrupted behavior in vivo. These results highlight the vulnerability of dentate gyrus–CA3 networks to aberrant human chromosome 21 gene expression and delineate hippocampal circuit abnormalities likely to contribute to distinct cognitive phenotypes in Down syndrome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Altered short-term but not long-term synaptic potentiation in the mossy fiber pathway of Tc1 mice.
Figure 2: Reduced synapse density and PSD volume in the middle molecular layer of dentate gyrus in Tc1 mice.
Figure 3: Three-dimensional reconstruction of CA3 pyramidal cell dendrites reveals loss of thorny excrescences in Tc1 mice.
Figure 4: Adult Tc1 mice show reduced postsynaptic thorny excrescences in live CA3 pyramidal cells.
Figure 5: Reduced contribution of mossy fiber input to CA3 pyramidal cell mEPSCs in Tc1 mice.
Figure 6: Impaired spatial information coding by CA3 and CA1 place cells in Tc1 mice.
Figure 7: Tc1 mice show impaired spatial working memory on the radial arm maze.

Similar content being viewed by others

References

  1. Reeves, R.H. et al. A mouse model for Down syndrome exhibits learning and behaviour deficits. Nat. Genet. 11, 177–184 (1995).

    CAS  PubMed  Google Scholar 

  2. Yu, T. et al. A mouse model of Down syndrome trisomic for all human chromosome 21 syntenic regions. Hum. Mol. Genet. 19, 2780–2791 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Pereira, P.L. et al. A new mouse model for the trisomy of the Abcg1–U2af1 region reveals the complexity of the combinatorial genetic code of down syndrome. Hum. Mol. Genet. 18, 4756–4769 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Kesslak, J.P., Nagata, S.F., Lott, I. & Nalcioglu, O. Magnetic resonance imaging analysis of age-related changes in the brains of individuals with Down's syndrome. Neurology 44, 1039–1045 (1994).

    CAS  PubMed  Google Scholar 

  5. Raz, N. et al. Selective neuroanatomic abnormalities in Down's syndrome and their cognitive correlates: evidence from MRI morphometry. Neurology 45, 356–366 (1995).

    CAS  PubMed  Google Scholar 

  6. Aylward, E.H. et al. MRI volumes of the hippocampus and amygdala in adults with Down's syndrome with and without dementia. Am. J. Psychiatry 156, 564–568 (1999).

    CAS  PubMed  Google Scholar 

  7. Pinter, J.D., Eliez, S., Schmitt, J.E., Capone, G.T. & Reiss, A.L. Neuroanatomy of Down's syndrome: a high-resolution MRI study. Am. J. Psychiatry 158, 1659–1665 (2001).

    CAS  PubMed  Google Scholar 

  8. Pennington, B.F., Moon, J., Edgin, J., Stedron, J. & Nadel, L. The neuropsychology of Down syndrome: evidence for hippocampal dysfunction. Child Dev. 74, 75–93 (2003).

    PubMed  Google Scholar 

  9. Edgin, J.O. et al. Development and validation of the Arizona Cognitive Test Battery for Down syndrome. J. Neurodev. Disord. 2, 149–164 (2010).

    PubMed  PubMed Central  Google Scholar 

  10. Duchon, A. et al. Identification of the translocation breakpoints in the Ts65Dn and Ts1Cje mouse lines: relevance for modeling Down syndrome. Mamm. Genome 22, 674–684 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Reinholdt, L.G. et al. Molecular characterization of the translocation breakpoints in the Down syndrome mouse model Ts65Dn. Mamm. Genome 22, 685–691 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Kurt, M.A., Kafa, M.I., Dierssen, M. & Davies, D.C. Deficits of neuronal density in CA1 and synaptic density in the dentate gyrus, CA3 and CA1, in a mouse model of Down syndrome. Brain Res. 1022, 101–109 (2004).

    PubMed  Google Scholar 

  13. Kleschevnikov, A.M. et al. Hippocampal long-term potentiation suppressed by increased inhibition in the Ts65Dn mouse, a genetic model of Down syndrome. J. Neurosci. 24, 8153–8160 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Belichenko, P.V. et al. Excitatory-inhibitory relationship in the fascia dentata in the Ts65Dn mouse model of Down syndrome. J. Comp. Neurol. 512, 453–466 (2009).

    PubMed  PubMed Central  Google Scholar 

  15. Belichenko, P.V. et al. Synaptic structural abnormalities in the Ts65Dn mouse model of Down Syndrome. J. Comp. Neurol. 480, 281–298 (2004).

    PubMed  Google Scholar 

  16. Popov, V.I., Kleschevnikov, A.M., Klimenko, O.A., Stewart, M.G. & Belichenko, P.V. Three-dimensional synaptic ultrastructure in the dentate gyrus and hippocampal area CA3 in the Ts65Dn mouse model of Down syndrome. J. Comp. Neurol. 519, 1338–1354 (2011).

    CAS  PubMed  Google Scholar 

  17. O'Doherty, A. et al. An aneuploid mouse strain carrying human chromosome 21 with Down syndrome phenotypes. Science 309, 2033–2037 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Morice, E. et al. Preservation of long-term memory and synaptic plasticity despite short-term impairments in the Tc1 mouse model of Down syndrome. Learn. Mem. 15, 492–500 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Rolls, E.T. A computational theory of episodic memory formation in the hippocampus. Behav. Brain Res. 215, 180–196 (2010).

    PubMed  Google Scholar 

  20. Henze, D.A., Wittner, L. & Buzsaki, G. Single granule cells reliably discharge targets in the hippocampal CA3 network in vivo. Nat. Neurosci. 5, 790–795 (2002).

    CAS  PubMed  Google Scholar 

  21. Hanson, J.E. & Madison, D.V. Imbalanced pattern completion vs. separation in cognitive disease: network simulations of synaptic pathologies predict a personalized therapeutics strategy. BMC Neurosci. 11, 96 (2010).

    PubMed  PubMed Central  Google Scholar 

  22. Nicoll, R.A. & Schmitz, D. Synaptic plasticity at hippocampal mossy fiber synapses. Nat. Rev. Neurosci. 6, 863–876 (2005).

    CAS  PubMed  Google Scholar 

  23. Bourne, J.N. & Harris, K.M. Coordination of size and number of excitatory and inhibitory synapses results in a balanced structural plasticity along mature hippocampal CA1 dendrites during LTP. Hippocampus 21, 354–373 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Acsády, L., Kamondi, A., Sik, A., Freund, T. & Buzsaki, G. GABAergic cells are the major postsynaptic targets of mossy fibers in the rat hippocampus. J. Neurosci. 18, 3386–3403 (1998).

    PubMed  PubMed Central  Google Scholar 

  25. Scott, R., Lalic, T., Kullmann, D.M., Capogna, M. & Rusakov, D.A. Target-cell specificity of kainate autoreceptor and Ca2+-store-dependent short-term plasticity at hippocampal mossy fiber synapses. J. Neurosci. 28, 13139–13149 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Cheng, J. & Ji, D. Rigid firing sequences undermine spatial memory codes in a neurodegenerative mouse model. Elife 2, e00647 (2013).

    PubMed  PubMed Central  Google Scholar 

  27. Cabral, H.O. et al. Oscillatory dynamics and place field maps reflect hippocampal ensemble processing of sequence and place memory under NMDA receptor control. Neuron 81, 402–415 (2014).

    CAS  PubMed  Google Scholar 

  28. Niewoehner, B. et al. Impaired spatial working memory but spared spatial reference memory following functional loss of NMDA receptors in the dentate gyrus. Eur. J. Neurosci. 25, 837–846 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Belichenko, N.P. et al. The “Down syndrome critical region” is sufficient in the mouse model to confer behavioral, neurophysiological, and synaptic phenotypes characteristic of Down syndrome. J. Neurosci. 29, 5938–5948 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Park, J., Song, W.J. & Chung, K.C. Function and regulation of Dyrk1A: towards understanding Down syndrome. Cell. Mol. Life Sci. 66, 3235–3240 (2009).

    CAS  PubMed  Google Scholar 

  31. Ferrer, I. & Gullotta, F. Down's syndrome and Alzheimer's disease: dendritic spine counts in the hippocampus. Acta Neuropathol. 79, 680–685 (1990).

    CAS  PubMed  Google Scholar 

  32. McHugh, T.J. et al. Dentate gyrus NMDA receptors mediate rapid pattern separation in the hippocampal network. Science 317, 94–99 (2007).

    CAS  PubMed  Google Scholar 

  33. Lanfranchi, S., Carretti, B., Spano, G. & Cornoldi, C. A specific deficit in visuospatial simultaneous working memory in Down syndrome. J. Intellect. Disabil. Res. 53, 474–483 (2009).

    CAS  PubMed  Google Scholar 

  34. Guidi, S. et al. Neurogenesis impairment and increased cell death reduce total neuron number in the hippocampal region of fetuses with Down syndrome. Brain Pathol. 18, 180–197 (2008).

    PubMed  Google Scholar 

  35. Smith, G.K., Kesner, R.P. & Korenberg, J.R. Dentate gyrus mediates cognitive function in the Ts65Dn/DnJ mouse model of down syndrome. Hippocampus 24, 354–362 (2014).

    CAS  PubMed  Google Scholar 

  36. Jones, M.W. & McHugh, T.J. Updating hippocampal representations: CA2 joins the circuit. Trends Neurosci. 34, 526–535 (2011).

    CAS  PubMed  Google Scholar 

  37. Hanson, J.E., Blank, M., Valenzuela, R.A., Garner, C.C. & Madison, D.V. The functional nature of synaptic circuitry is altered in area CA3 of the hippocampus in a mouse model of Down's syndrome. J. Physiol. (Lond.) 579, 53–67 (2007).

    CAS  Google Scholar 

  38. Witton, J., Brown, J.T., Jones, M.W. & Randall, A.D. Altered synaptic plasticity in the mossy fiber pathway of transgenic mice expressing mutant amyloid precursor protein. Mol. Brain 3, 32 (2010).

    PubMed  PubMed Central  Google Scholar 

  39. Gardiner, K.J. Molecular basis of pharmacotherapies for cognition in Down syndrome. Trends Pharmacol. Sci. 31, 66–73 (2010).

    CAS  PubMed  Google Scholar 

  40. Fernandez, F. et al. Pharmacotherapy for cognitive impairment in a mouse model of Down syndrome. Nat. Neurosci. 10, 411–413 (2007).

    CAS  PubMed  Google Scholar 

  41. Kishnani, P.S. et al. Donepezil for treatment of cognitive dysfunction in children with Down syndrome aged 10–17. Am. J. Med. Genet. 152A, 3028–3035 (2010).

    PubMed  Google Scholar 

  42. Conners, F.A., Rosenquist, C.J., Arnett, L., Moore, M.S. & Hume, L.E. Improving memory span in children with Down syndrome. J. Intellect. Disabil. Res. 52, 244–255 (2008).

    CAS  PubMed  Google Scholar 

  43. Contestabile, A., Benfenati, F. & Gasparini, L. Communication breaks-Down: from neurodevelopment defects to cognitive disabilities in Down syndrome. Prog. Neurobiol. 91, 1–22 (2010).

    PubMed  Google Scholar 

  44. Fiala, J.C. & Harris, K.M. Cylindrical diameters method for calibrating section thickness in serial electron microscopy. J. Microsc. 202, 468–472 (2001).

    CAS  PubMed  Google Scholar 

  45. Nevian, T. & Helmchen, F. Calcium indicator loading of neurons using single-cell electroporation. Pflugers Arch. 454, 675–688 (2007).

    CAS  PubMed  Google Scholar 

  46. Scott, R. & Rusakov, D.A. Main determinants of presynaptic Ca2+ dynamics at individual mossy fiber-CA3 pyramidal cell synapses. J. Neurosci. 26, 7071–7081 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Schmitzer-Torbert, N., Jackson, J., Henze, D., Harris, K. & Redish, A.D. Quantitative measures of cluster quality for use in extracellular recordings. Neuroscience 131, 1–11 (2005).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Thanks to A. Slender, H. Davies and D. Ford for expert technical assistance and to the Wellcome Trust (Programme Grant to E.M.C.F., V.L.J.T. and M.W.J., Principal Fellowship to D.A.R.), the UK Medical Research Council (grant to E.M.C.F. and V.L.J.T., Industrial Collaborative Studentship to J.W.), Biotechnology and Biological Sciences Research Council (grant to M.G.S.), European Research Council Advanced Grant and FP7 ITN Extrabrain (to D.A.R.) Russian Science Foundation grant 15-14-30000 (to D.A.R.) and Russian Foundation for Basic Research grant 08-04-00049a (to V.I.P.) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

E.M.C.F. and V.L.J.T. designed the Tc1 mouse model and initiated the study. J.W., D.M.C. and A.T. performed extracellular in vitro electrophysiology and analyses; V.I.P. and I.K. performed electron microscopy and volumetric experiments and analyses; R.P. and T.P.J. performed two-photon imaging and intracellular electrophysiological recording and analyses; J.W. and L.E.Z. performed in vivo electrophysiology and analyses; S.J.L. performed behavioral experiments and analyses; and J.T.B., A.D.R., D.M.B., F.A.E., M.G.S., D.A.R. and M.W.J. designed experiments, performed data analyses and wrote the paper.

Corresponding author

Correspondence to Matt W Jones.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Normal granule cell excitability in Tc1 mice.

Pooled stimulus-response curves showing the mean ± SEM amplitude of antidromically-evoked compound action potential recorded in the granule cell (GC) layer of dentate gyrus (DG) vs. the strength of stimulation applied to mossy fibers in area CA3. Data are pooled from slices prepared from 7 wild-type (WT) and 6 Tc1 mice. Inset traces show example responses at 50, 150 and 300µA stimulation. Scale bar: 1ms, 5mV. P=0.70, F(1,11)=0.15, two-way mixed ANOVA.

Supplementary Figure 2 Normal synaptic function in the Schaffer collateral pathway in Tc1 mice.

(a) Pooled CA3-CA1 stimulus-response curves for recordings made in hippocampal slices from wild-type (WT) and Tc1 mice (mean ± SEM). Inset traces show overlaid example responses to 20, 40 and 80V stimulation for the two genotypes. (b) Pooled CA3-CA1 paired-pulse facilitation curves for paired stimuli delivered over inter-stimulus intervals from 25-400ms. Traces show example responses at each inter-stimulus interval. (c) Pooled data from CA3-CA1 LTP experiments in wild-type and Tc1 mice. Arrow denotes delivery of the conditioning stimulus (200ms, 100Hz repeated 3x at 1.5s intervals). Traces show example responses at times a and b. Scale bars: 5ms, 0.25mV.

Supplementary Figure 3 Normal hippocampal volumes and dentate granule cell and CA3 pyramidal cell densities in Tc1 mice.

(a) Hippocampus:brain volume ratios in wild-type (WT) and Tc1 mice. For each box-plot, the center line illustrates the median and box limits indicate the 25th and 75th percentiles (determined using R software). Whiskers extend to the minimum and maximum values. Individual data points are plotted as open circles. n=4, 5, 4, 4 mice per sample respectively. (b) Dentate gyrus (DG) granule cell densities (per mm3) in wild-type (n=3) and Tc1 (n=3) mice. (c) Area CA3 pyramidal cell densities (per mm3) in wild-type (n=3) and Tc1 (n=3) mice.

Supplementary Figure 4 Three-dimensional reconstructions of CA3 dendritic segments, thorny excrescences and postsynaptic densities in wild-type and Tc1 mice.

Dendritic segments and associated presynaptic giant boutons from (a) wild-type and (f) Tc1 mice. Boutons are shown separately in (b) for the wild-type example. Typical examples of thorny excrescences with their postsynaptic densities (PSD) shown in red from (c-d) wild-type and (g) Tc1 mice. 10 representative PSDs from (e) wild-type and (h) Tc1 mice, showing reduced PSD volume in Tc1 animals.

Supplementary Figure 5 Schematic comparison of thorny excrescences in wild-type and Tc1 mice.

(a) Wild-type mice. (b) Tc1 mice. Prominent features in the Tc1 mice are: (1) retraction of thorns on thorny excrescences (yellow); (2) decrease in the volume of mossy fibre giant boutons (blue); (3) rearrangements of postsynaptic densities (PSD; red); (4) retraction of mitochondria from thorny excrescences (green). Note that dendritic spines in CA1 and dentate gyrus do not contain mitochondria.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Witton, J., Padmashri, R., Zinyuk, L. et al. Hippocampal circuit dysfunction in the Tc1 mouse model of Down syndrome. Nat Neurosci 18, 1291–1298 (2015). https://doi.org/10.1038/nn.4072

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.4072

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing