Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Pathway-driven discovery of epilepsy genes

Abstract

Epilepsy genes deliver critical insights into the molecular control of brain synchronization and are revolutionizing our understanding and treatment of the disease. The epilepsy-associated genome is rapidly expanding, and two powerful complementary approaches, isolation of de novo exome variants in patients and targeted mutagenesis in model systems, account for the steep increase. In sheer number, the tally of genes linked to seizures will likely match that of cancer and exceed it in biological diversity. The proteins act within most intracellular compartments and span the molecular determinants of firing and wiring in the developing brain. Every facet of neurotransmission, from dendritic spine to exocytotic machinery, is in play, and defects of synaptic inhibition are over-represented. The contributions of somatic mutations and noncoding microRNAs are also being explored. The functional spectrum of established epilepsy genes and the arrival of rapid, precise technologies for genome editing now provide a robust scaffold to prioritize hypothesis-driven discovery and further populate this genetic proto-map. Although each gene identified offers translational potential to stratify patient care, the complexity of individual variation and covert actions of genetic modifiers may confound single-gene solutions for the clinical disorder. In vivo genetic deconstruction of epileptic networks, ex vivo validation of variant profiles in patient-derived induced pluripotent stem cells, in silico variant modeling and modifier gene discovery, now in their earliest stages, will help clarify individual patterns. Because seizures stand at the crossroads of all neuronal synchronization disorders in the developing and aging brain, the neurobiological analysis of epilepsy-associated genes provides an extraordinary gateway to new insights into higher cortical function.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Inherited gene variants are discovered in human epilepsy pedigrees and de novo variants are detected in proband-parental trios.
Figure 2: A significant monogenic driver pathway for epilepsy can be constructed from current gene evidence implicating mutations in genes that impair every aspect of synaptic inhibitory transmission from early development through maturation of adult GABA neurotransmission.
Figure 3: Two extreme examples of single and multigenic biological complexity in epileptic brain.

Similar content being viewed by others

References

  1. Shoffner, J.M. et al. Myoclonic epilepsy and ragged-red fiber disease (MERRF) is associated with a mitochondrial DNA tRNA(Lys) mutation. Cell 61, 931–937 (1990).

    CAS  PubMed  Google Scholar 

  2. Berg, A.T. et al. Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE Commission on Classification and Terminology, 2005–2009. Epilepsia 51, 676–685 (2010).

    PubMed  Google Scholar 

  3. MacArthur, D.G. et al. Guidelines for investigating causality of sequence variants in human disease. Nature 508, 469–476 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Petrovski, S. et al. Genic intolerance to functional variation and the interpretation of personal genomes. PLoS Genet. 9, e1003709 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Knecht, C. & Krawczak, M. Molecular genetic epidemiology of human diseases: from patterns to predictions. Hum. Genet. 133, 425–430 (2014).

    CAS  PubMed  Google Scholar 

  6. Katsonis, P. et al. Single nucleotide variations: biological impact and theoretical interpretation. Protein Sci. 23, 1650–1666 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Veltman, J.A. & Brunner, H.G. De novo mutations in human genetic disease. Nat. Rev. Genet. 13, 565–575 (2012).

    CAS  PubMed  Google Scholar 

  8. Hoischen, A., Krumm, N. & Eichler, E.E. Prioritization of neurodevelopmental disease genes by discovery of new mutations. Nat. Neurosci. 17, 764–772 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Epi4K Consortium. et al. De novo mutations in epileptic encephalopathies. Nature 501, 217–221 (2013).

  10. Yang, H., Wang, H. & Jaenisch, R. Generating genetically modified mice using CRISPR/Cas-mediated genome engineering. Nat. Protoc. 9, 1956–1968 (2014).

    CAS  PubMed  Google Scholar 

  11. Yin, H. et al. Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat. Biotechnol. 32, 551–553 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Velasco, I. et al. Generation of neurons from somatic cells of healthy individuals and neurological patients through induced pluripotency or direct conversion. Stem Cells 32, 2811–2817 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu, Y. et al. Dravet syndrome patient-derived neurons suggest a novel epilepsy mechanism. Ann. Neurol. 74, 128–139 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Steinlein, O.K. et al. A missense mutation in the neuronal nicotinic acetylcholine receptor α4 subunit is associated with autosomal dominant nocturnal frontal lobe epilepsy. Nat. Genet. 11, 201–203 (1995).

    CAS  PubMed  Google Scholar 

  15. Tempel, B.L. et al. Sequence of a probable potassium channel component encoded at Shaker locus of Drosophila. Science 237, 770–775 (1987).

    CAS  PubMed  Google Scholar 

  16. De Jonghe, P. Molecular genetics of Dravet syndrome. Dev. Med. Child Neurol. 53 (suppl. 2), 7–10 (2011).

    PubMed  Google Scholar 

  17. Hildebrand, M.S. et al. Recent advances in the molecular genetics of epilepsy. J. Med. Genet. 50, 271–279 (2013).

    CAS  PubMed  Google Scholar 

  18. Hirose, S. et al. SCN1A testing for epilepsy: application in clinical practice. Epilepsia 54, 946–952 (2013).

    CAS  PubMed  Google Scholar 

  19. Maheshwari, A. & Noebels, J.L. Monogenic models of absence epilepsy: windows into the complex balance between inhibition and excitation in thalamocortical microcircuits. in Genetics of Epilepsy (ed. Steinlein, O.K.) Prog. Brain Res. 213, 223–252 (2014).

    PubMed  Google Scholar 

  20. Jasper's Basic Mechanisms of the Epilepsies 4th edn. (eds. Noebels, J.L., Avoli, M., Rogawski, M.A., Olsen, R.W. & Delgado-Escueta, A.V.) (Oxford Univ. Press, 2012).

  21. French, J.A. ILAE classification redux: ready for prime time? Epilepsy Curr. 14, 84–85 (2014).

    PubMed  PubMed Central  Google Scholar 

  22. Singh, N.A. et al. A novel potassium channel gene, KCNQ2, is mutated in an inherited epilepsy of newborns. Nat. Genet. 18, 25–29 (1998).

    CAS  PubMed  Google Scholar 

  23. Cooper, E.C. Potassium channels (including KCNQ) and epilepsy. in Jasper's Basic Mechanisms of the Epilepsies 4th edn. (eds. Noebels, J.L., Avoli, M., Rogawski, M.A., Olsen, R.W. & Delgado-Escueta, A.V.) (National Center for Biotechnology Information, Bethesda, Maryland, USA, 2012).

  24. Claes, L.R. et al. De novo KCNQ2 mutations in patients with benign neonatal seizures. Neurology 63, 2155–2158 (2004).

    CAS  PubMed  Google Scholar 

  25. Orhan, G. et al. Dominant-negative effects of KCNQ2 mutations are associated with epileptic encephalopathy. Ann. Neurol. 75, 382–394 (2014).

    CAS  PubMed  Google Scholar 

  26. Wallace, R.H. et al. Febrile seizures and generalized epilepsy associated with a mutation in the Na+-channel β1 subunit gene SCN1B. Nat. Genet. 19, 366–370 (1998).

    CAS  PubMed  Google Scholar 

  27. Brunklaus, A. & Zuberi, S.M. Dravet syndrome–from epileptic encephalopathy to channelopathy. Epilepsia 55, 979–984 (2014).

    CAS  PubMed  Google Scholar 

  28. Kim, G.E. & Kaczmarek, L.K. Emerging role of the KCNT1 Slack channel in intellectual disability. Front. Cell. Neurosci. 8, 209 (2014).

    PubMed  PubMed Central  Google Scholar 

  29. Barcia, G. et al. De novo gain-of-function KCNT1 channel mutations cause malignant migrating partial seizures of infancy. Nat. Genet. 44, 1255–1259 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Heron, S.E. et al. Missense mutations in the sodium-gated potassium channel gene KCNT1 cause severe autosomal dominant nocturnal frontal lobe epilepsy. Nat. Genet. 44, 1188–1190 (2012).

    CAS  PubMed  Google Scholar 

  31. Pearson, T.S. et al. Phenotypic spectrum of glucose transporter type 1 deficiency syndrome (Glut1 DS). Curr. Neurol. Neurosci. Rep. 13, 342 (2013).

    PubMed  Google Scholar 

  32. Landrum, M.J. et al. ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res. 42, D980–D985 (2014).

    CAS  PubMed  Google Scholar 

  33. Peñagarikano, O. et al. Absence of CNTNAP2 leads to epilepsy, neuronal migration abnormalities, and core autism-related deficits. Cell 147, 235–246 (2011).

    PubMed  PubMed Central  Google Scholar 

  34. Ozkan, E.D. et al. Reduced cognition in Syngap1 mutants is caused by isolated damage within developing forebrain excitatory neurons. Neuron 82, 1317–1333 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Palop, J.J. et al. Aberrant excitatory neuronal activity and compensatory remodeling of inhibitory hippocampal circuits in mouse models of Alzheimer's disease. Neuron 55, 697–711 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Lopera, F. et al. Clinical features of early-onset Alzheimer disease in a large kindred with an E280A presenilin-1 mutation. J. Am. Med. Assoc. 277, 793–799 (1997).

    CAS  Google Scholar 

  37. Zhu, P.J. et al. Suppression of PKR promotes network excitability and enhanced cognition by interferon-γ-mediated disinhibition. Cell 147, 1384–1396 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Heron, S.E. et al. PRRT2 mutations cause benign familial infantile epilepsy and infantile convulsions with choreoathetosis syndrome. Am. J. Hum. Genet. 90, 152–160 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Heinzen, E.L. et al. Distinct neurological disorders with ATP1A3 mutations. Lancet Neurol. 13, 503–514 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Ortolano, S. et al. Loss of GABAergic cortical neurons underlies the neuropathology of Lafora disease. Mol. Brain 7, 7 (2014).

    PubMed  PubMed Central  Google Scholar 

  41. Matsuura, T. et al. Large expansion of the ATTCT pentanucleotide repeat in spinocerebellar ataxia type 10. Nat. Genet. 26, 191–194 (2000).

    CAS  PubMed  Google Scholar 

  42. Betancur, C. Etiological heterogeneity in autism spectrum disorders: more than 100 genetic and genomic disorders and still counting. Brain Res. 1380, 42–77 (2011).

    CAS  PubMed  Google Scholar 

  43. Liu, M. et al. Loss of BETA2/NeuroD leads to malformation of the dentate gyrus and epilepsy. Proc. Natl. Acad. Sci. USA 97, 865–870 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Ross, M.E. & Walsh, C.A. Human brain malformations and their lessons for neuronal migration. Annu. Rev. Neurosci. 24, 1041–1070 (2001).

    CAS  PubMed  Google Scholar 

  45. Hartmann, H.A. et al. Selective localization of cardiac SCN5A sodium channels in limbic regions of rat brain. Nat. Neurosci. 2, 593–595 (1999).

    CAS  PubMed  Google Scholar 

  46. Goldman, A.M. et al. Arrhythmia in heart and brain: KCNQ1 mutations link epilepsy and sudden unexplained death. Sci. Transl. Med. 1, 2ra6 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Glasscock, E. et al. Kv1.1 potassium channel deficiency reveals brain-driven cardiac dysfunction as a candidate mechanism for sudden unexplained death in epilepsy. J. Neurosci. 30, 5167–5175 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Qi, Y. et al. Hyper-SUMOylation of the Kv7 potassium channel diminishes the M-current leading to seizures and sudden death. Neuron 83, 1159–1171 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Klassen, T.L. et al. High-resolution molecular genomic autopsy reveals complex sudden unexpected death in epilepsy risk profile. Epilepsia 55, e6–e12 (2014).

    CAS  PubMed  Google Scholar 

  50. Heinzen, E.L. et al. Exome sequencing followed by large-scale genotyping fails to identify single rare variants of large effect in idiopathic generalized epilepsy. Am. J. Hum. Genet. 91, 293–302 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Wheeler, D.A. & Wang, L. From human genome to cancer genome: the first decade. Genome Res. 23, 1054–1062 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Vogelstein, B. et al. Cancer genome landscapes. Science 339, 1546–1558 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Alexandrov, L.B. & Stratton, M.R. Mutational signatures: the patterns of somatic mutations hidden in cancer genomes. Curr. Opin. Genet. Dev. 24, 52–60 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Hu, W.F., Chahrour, M.H. & Walsh, C.A. The diverse genetic landscape of neurodevelopmental disorders. Annu. Rev. Genomics Hum. Genet. 15, 195–213 (2014).

    PubMed  Google Scholar 

  55. Jamuar, S.S. et al. Somatic mutations in cerebral cortical malformations. N. Engl. J. Med. 371, 733–743 (2014).

    PubMed  PubMed Central  Google Scholar 

  56. Lee, J.H. et al. De novo somatic mutations in components of the PI3K–AKT3-mTOR pathway cause hemimegalencephaly. Nat. Genet. 44, 941–945 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Cai, X. et al. Single-cell, genome-wide sequencing identifies clonal somatic copy-number variation in the human brain. Cell Reports 8, 1280–1289 (2014).

    CAS  PubMed  Google Scholar 

  58. Fishell, G. & Heintz, N. The neuron identity problem: form meets function. Neuron 80, 602–612 (2013).

    CAS  PubMed  Google Scholar 

  59. Gerfen, C.R., Paletzki, R. & Heintz, N. GENSAT BAC cre-recombinase driver lines to study the functional organization of cerebral cortical and basal ganglia circuits. Neuron 80, 1368–1383 (2013).

    CAS  PubMed  Google Scholar 

  60. Eberwine, J. et al. The promise of single-cell sequencing. Nat. Methods 11, 25–27 (2014).

    CAS  PubMed  Google Scholar 

  61. Stephens, P.J. et al. The landscape of cancer genes and mutational processes in breast cancer. Nature 486, 400–404 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Maheshwari, A. & Noebels, J.L. Monogenic models of absence epilepsy: windows into the complex balance between inhibition and excitation in thalamocortical microcircuits. Prog. Brain Res. 213, 223–252 (2014).

    PubMed  Google Scholar 

  63. Brooks-Kayal, A.R. & Russek, S.J. Regulation of GABAA receptor gene expression and epilepsy. in Jasper's Basic Mechanisms of the Epilepsies 4th edn. (eds. Noebels, J.L., Avoli, M., Rogawski, M.A., Olsen, R.W. & Delgado-Escueta, A.V.) (National Center for Biotechnology Information, Bethesda, Maryland, USA, 2012).

  64. Houser, C.R. Do structural changes in GABA neurons give rise to the epileptic state? Adv. Exp. Med. Biol. 813, 151–160 (2014).

    PubMed  PubMed Central  Google Scholar 

  65. Petilla Interneuron Nomenclature Group. et al. Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nat. Rev. Neurosci. 9, 557–568 (2008).

  66. Kepecs, A. & Fishell, G. Interneuron cell types are fit to function. Nature 505, 318–326 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Okaty, B.W. et al. Transcriptional and electrophysiological maturation of neocortical fast-spiking GABAergic interneurons. J. Neurosci. 29, 7040–7052 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Lancaster, E. & Dalmau, J. Neuronal autoantigens–pathogenesis, associated disorders and antibody testing. Nat. Rev. Neurosci. 8, 380–390 (2012).

    CAS  Google Scholar 

  69. Rossignol, E. et al. CaV 2.1 ablation in cortical interneurons selectively impairs fast-spiking basket cells and causes generalized seizures. Ann. Neurol. 74, 209–222 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Mark, M.D. et al. Delayed postnatal loss of P/Q-type calcium channels recapitulates the absence epilepsy, dyskinesia, and ataxia phenotypes of genomic Cacna1a mutations. J. Neurosci. 31, 4311–4326 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Maejima, T. et al. Postnatal loss of P/Q-type channels confined to rhombic-lip-derived neurons alters synaptic transmission at the parallel fiber to purkinje cell synapse and replicates genomic Cacna1a mutation phenotype of ataxia and seizures in mice. J. Neurosci. 33, 5162–5174 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Ogiwara, I. et al. Nav1.1 haploinsufficiency in excitatory neurons ameliorates seizure-associated sudden death in a mouse model of Dravet syndrome. Hum. Mol. Genet. 22, 4784–4804 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Chao, H.T. et al. Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes. Nature 468, 263–269 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhang, W. et al. Loss of MeCP2 from forebrain excitatory neurons leads to cortical hyperexcitation and seizures. J. Neurosci. 34, 2754–2763 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Burgess, D.L. et al. β subunit reshuffling modifies N- and P/Q-type Ca2+ channel subunit compositions in lethargic mouse brain. Mol. Cell. Neurosci. 13, 293–311 (1999).

    CAS  PubMed  Google Scholar 

  76. Zucchini, S. et al. Identification of miRNAs differentially expressed in human epilepsy with or without granule cell pathology. PLoS ONE 9, e105521 (2014).

    PubMed  PubMed Central  Google Scholar 

  77. Henshall, D.C. MicroRNA and epilepsy: profiling, functions and potential clinical applications. Curr. Opin. Neurol. 27, 199–205 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Ule, J. et al. Nova regulates brain-specific splicing to shape the synapse. Nat. Genet. 37, 844–852 (2005).

    CAS  PubMed  Google Scholar 

  79. St Laurent, G. et al. Genome-wide analysis of A-to-I RNA editing by single-molecule sequencing in Drosophila. Nat. Struct. Mol. Biol. 20, 1333–1339 (2013).

    CAS  PubMed  Google Scholar 

  80. Eom, T. et al. NOVA-dependent regulation of cryptic NMD exons controls synaptic protein levels after seizure. Elife 2, e00178 (2013).

    PubMed  PubMed Central  Google Scholar 

  81. Klassen, T. et al. Exome sequencing of ion channel genes reveals complex profiles confounding personal risk assessment in epilepsy. Cell 145, 1036–1048 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Toledo-Rodriguez, M. et al. Correlation maps allow neuronal electrical properties to be predicted from single-cell gene expression profiles in rat neocortex. Cereb. Cortex 14, 1310–1327 (2004).

    PubMed  Google Scholar 

  83. Glasscock, E. et al. Masking epilepsy by combining two epilepsy genes. Nat. Neurosci. 10, 1554–1558 (2007).

    CAS  PubMed  Google Scholar 

  84. Marder, E. Neuromodulation of neuronal circuits: back to the future. Neuron 76, 1–11 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Marder, E. & Goaillard, J.M. Variability, compensation and homeostasis in neuron and network function. Nat. Rev. Neurosci. 7, 563–574 (2006).

    CAS  PubMed  Google Scholar 

  86. Ganetzky, B. & Wu, C.F. Drosophila mutants with opposing effects on nerve excitability: genetic and spatial interactions in repetitive firing. J. Neurophysiol. 47, 501–514 (1982).

    CAS  PubMed  Google Scholar 

  87. Frankel, W.N. et al. Unraveling genetic modifiers in the gria4 mouse model of absence epilepsy. PLoS Genet. 10, e1004454 (2014).

    PubMed  PubMed Central  Google Scholar 

  88. Meisler, M.H., O'Brien, J.E. & Sharkey, L.M. Sodium channel gene family: epilepsy mutations, gene interactions and modifier effects. J. Physiol. (Lond.) 588, 1841–1848 (2010).

    CAS  Google Scholar 

  89. Miller, A.R. et al. Mapping genetic modifiers of survival in a mouse model of Dravet syndrome. Genes Brain Behav. 13, 163–172 (2014).

    CAS  PubMed  Google Scholar 

  90. Howlett, I.C. et al. Drosophila as a model for intractable epilepsy: gilgamesh suppresses seizures in para(bss1) heterozygote flies. G3 (Bethesda) 3, 1399–1407 (2013).

    Google Scholar 

  91. Holth, J.K. et al. Tau loss attenuates neuronal network hyperexcitability in mouse and Drosophila genetic models of epilepsy. J. Neurosci. 33, 1651–1659 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Gheyara, A.L. et al. Tau reduction prevents disease in a mouse model of Dravet syndrome. Ann. Neurol. 76, 443–456 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Tomaselli, G.F. Cardiac Ito, KCNE2, and Brugada syndrome: promiscuous subunit interactions, or what happens in HEK cells stays in HEK cells? Heart Rhythm 7, 206–207 (2010).

    PubMed  Google Scholar 

  94. Yu, F.H. et al. Reduced sodium current in GABAergic interneurons in a mouse model of severe myoclonic epilepsy in infancy. Nat. Neurosci. 9, 1142–1149 (2006).

    CAS  PubMed  Google Scholar 

  95. Zhang, Y. et al. Mutations in high-voltage-activated calcium channel genes stimulate low-voltage-activated currents in mouse thalamic relay neurons. J. Neurosci. 22, 6362–6371 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Sutherland, M.L. et al. Overexpression of a Shaker-type potassium channel in mammalian central nervous system dysregulates native potassium channel gene expression. Proc. Natl. Acad. Sci. USA 96, 2451–2455 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Supported by US National Institutes of Health NS29709, NINDS Center for SUDEP Research (NS090340) and The Blue Bird Circle Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey Noebels.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noebels, J. Pathway-driven discovery of epilepsy genes. Nat Neurosci 18, 344–350 (2015). https://doi.org/10.1038/nn.3933

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3933

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing