Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Stress weakens prefrontal networks: molecular insults to higher cognition

Abstract

A variety of cognitive disorders are worsened by stress exposure and involve dysfunction of the newly evolved prefrontal cortex (PFC). Exposure to acute, uncontrollable stress increases catecholamine release in PFC, reducing neuronal firing and impairing cognitive abilities. High levels of noradrenergic α1-adrenoceptor and dopaminergic D1 receptor stimulation activate feedforward calcium–protein kinase C and cyclic AMP–protein kinase A signaling, which open potassium channels to weaken synaptic efficacy in spines. In contrast, high levels of catecholamines strengthen the primary sensory cortices, amygdala and striatum, rapidly flipping the brain from reflective to reflexive control of behavior. These mechanisms are exaggerated by chronic stress exposure, where architectural changes lead to persistent loss of PFC function. Understanding these mechanisms has led to the successful translation of prazosin and guanfacine for treating stress-related disorders. Dysregulation of stress signaling pathways by genetic insults likely contributes to PFC deficits in schizophrenia, while age-related insults initiate interacting vicious cycles that increase vulnerability to Alzheimer's degeneration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Changes in brain systems controlling behavior under conditions of alert safety versus uncontrollable stress.
Figure 2: The cellular basis of working memory, as discovered by Goldman-Rakic.
Figure 3: Dynamic network connectivity (DNC) in the primate dlPFC.

Marina Corral Spence/Nature Publishing Group

Figure 4: Hypothetical interactions between the intracellular signaling pathways activated by stress exposure and pathways that regulate actin dynamics and inflammation.

Marina Corral Spence/Nature Publishing Group

Figure 5: The multiple, interacting, feedforward vicious cycles that may be disinhibited in the aging dlPFC, contributing to increased vulnerability to degeneration.

Marina Corral Spence/Nature Publishing Group

Similar content being viewed by others

References

  1. Goldman-Rakic, P.S. Cellular basis of working memory. Neuron 14, 477–485 (1995).This is an excellent review of the dlPFC microcircuits that underlie spatial working memory in primates and of how they generate the mental representations that are the foundation of abstract thought.

    Article  CAS  PubMed  Google Scholar 

  2. Ongür, D. & Price, J.L. The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb. Cortex 10, 206–219 (2000).This is an excellent review of the connections and functions of the ventral and medial PFC in primates.

    Article  PubMed  Google Scholar 

  3. Opler, L.A., Opler, M.G. & Arnsten, A.F.T. Ameliorating treatment-refractory depression with intranasal ketamine: potential NMDA receptor actions in the pain circuitry representing mental anguish. CNS Spectr. doi:S1092852914000686 (26 January 2015).10.1017/S1092852914000686

  4. Selemon, L.D. & Goldman-Rakic, P.S. The reduced neuropil hypothesis: a circuit based model of schizophrenia. Biol. Psychiatry 45, 17–25 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Cannon, T.D. et al. Progressive reduction in cortical thickness as psychosis develops: A multisite longitudinal neuroimaging study of youth at elevated clinical risk. Biol. Psychiatry 77, 147–157 (2015).

    Article  PubMed  Google Scholar 

  6. Bussière, T. et al. Progressive degeneration of nonphosphorylated neurofilament protein-enriched pyramidal neurons predicts cognitive impairment in Alzheimer's disease: stereologic analysis of prefrontal cortex area 9. J. Comp. Neurol. 463, 281–302 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Blumberg, H.P. et al. Age, rapid-cycling, and pharmacotherapy effects on ventral prefrontal cortex in bipolar disorder: a cross-sectional study. Biol. Psychiatry 59, 611–618 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Kühn, S. & Gallinat, J. Gray matter correlates of posttraumatic stress disorder: a quantitative meta-analysis. Biol. Psychiatry 73, 70–74 (2013).

    Article  PubMed  Google Scholar 

  9. Elston, G.N. et al. Specializations of the granular prefrontal cortex of primates: implications for cognitive processing. Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 288, 26–35 (2006).

    Article  PubMed  Google Scholar 

  10. Wang, M. et al. NMDA receptors subserve working memory persistent neuronal firing In dorsolateral prefrontal cortex. Neuron 77, 736–749 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yang, Y. et al. Nicotinic α7 receptors enhance NMDA cognitive circuits in dorsolateral prefrontal cortex. Proc. Natl. Acad. Sci. USA 110, 12078–12083 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Datta, D., Arion, D. & Lewis, D.A. Developmental expression patterns of GABAA receptor subunits in layer 3 and 5 pyramidal cells of monkey prefrontal cortex. Cereb. Cortex 25, 2295–2305 (2015).

    Article  PubMed  Google Scholar 

  13. Arnsten, A.F.T., Wang, M. & Paspalas, C.D. Neuromodulation of thought: Flexibilities and vulnerabilities in prefrontal cortical network synapses. Neuron 76, 223–239 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Carlyle, B.C. et al. cAMP-PKA phosphorylation of tau confers risk for degeneration in aging association cortex. Proc. Natl. Acad. Sci. USA 111, 5036–5041 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Caetano, M.S. et al. Lost in transition: Aging-related changes in executive control by the medial prefrontal cortex. J. Neurosci. 32, 3765–3777 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Arnsten, A.F.T. Stress signaling pathways that impair prefrontal cortex structure and function. Nat. Rev. Neurosci. 10, 410–422 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Glass, D.C., Reim, B. & Singer, J.E. Behavioral consequences of adaptation to controllable and uncontrollable noise. J. Exp. Soc. Psychol. 7, 244–257 (1971).

    Article  Google Scholar 

  18. Minor, T.R., Jackson, R.L. & Maier, S.F. Effects of task-irrelevant cues and reinforcement delay on choice-escape learning following inescapable shock: evidence for a deficit in selective attention. J. Exp. Psychol. Anim. Behav. Process. 10, 543–556 (1984).

    Article  CAS  PubMed  Google Scholar 

  19. Murphy, B.L., Arnsten, A.F.T., Goldman-Rakic, P.S. & Roth, R.H. Increased dopamine turnover in the prefrontal cortex impairs spatial working memory performance in rats and monkeys. Proc. Natl. Acad. Sci. USA 93, 1325–1329 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Arnsten, A.F.T. & Goldman-Rakic, P.S. Noise stress impairs prefrontal cortical cognitive function in monkeys: evidence for a hyperdopaminergic mechanism. Arch. Gen. Psychiatry 55, 362–368 (1998). This study and ref. 19 above were the first to show that stress exposure impairs PFC function in animals and that it is caused by high levels of stress-induced catecholamine release in the PFC.

    Article  CAS  PubMed  Google Scholar 

  21. Elliott, A.E. & Packard, M.G. Intra-amygdala anxiogenic drug infusion prior to retrieval biases rats towards the use of habit memory. Neurobiol. Learn. Mem. 90, 616–623 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Rodrigues, S.M., LeDoux, J.E. & Sapolsky, R.M. The influence of stress hormones on fear circuitry. Annu. Rev. Neurosci. 32, 289–313 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Yamada, K., McEwen, B.S. & Pavlides, C. Site and time dependent effects of acute stress on hippocampal long-term potentiation in freely behaving rats. Exp. Brain Res. 152, 52–59 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Goldstein, L.E., Rasmusson, A.M., Bunney, S.B. & Roth, R.H. Role of the amygdala in the coordination of behavioral, neuroendocrine and prefrontal cortical monoamine responses to psychological stress in the rat. J. Neurosci. 16, 4787–4798 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Arnsten, A.F.T. The biology of feeling frazzled. Science 280, 1711–1712 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Shansky, R.M., Rubinow, K., Brennan, A. & Arnsten, A.F. The effects of sex and hormonal status on restraint-stress-induced working memory impairment. Behav. Brain Funct. 2, 8 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Olver, J.S., Pinney, M., Maruff, P. & Norman, T.R. Impairments of spatial working memory and attention following acute psychosocial stress. Stress Health 31, 115–123 (2015).

    Article  PubMed  Google Scholar 

  28. Kim, J.J. & Diamond, D.M. The stressed hippocampus, synaptic plasticity and lost memories. Nat. Rev. Neurosci. 3, 453–462 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Spyrka, J., Danielewicz, J. & Hess, G. Brief neck restraint stress enhances long-term potentiation and suppresses long-term depression in the dentate gyrus of the mouse. Brain Res. Bull. 85, 363–367 (2011).

    Article  PubMed  Google Scholar 

  30. Sinha, R., Lacadie, C.M., Skudlarski, P. & Wexler, B.E. Neural circuits underlying emotional distress in humans. Ann. NY Acad. Sci. 1032, 254–257 (2004).

    Article  PubMed  Google Scholar 

  31. Qin, S., Hermans, E.J., van Marle, H.J.F., Lou, J. & Fernandez, G. Acute psychological stress reduces working memory-related activity in the dorsolateral prefrontal cortex. Biol. Psychiatry 66, 25–32 (2009).This study was the first to show that acute stress exposure impairs the working memory functions of the dlPFC in human subjects, using fMRI to document the pattern of brain activity changes that occur with exposure to chronic stress. Its companion study (ref. 32) showed that stress-induced cognitive impairment in dlPFC is associated with genetic signatures of higher catecholamine levels, thus bridging the research in animals and human subjects.

    Article  PubMed  Google Scholar 

  32. Qin, S. et al. The effect of moderate acute psychological stress on working memory-related neural activity is modulated by a genetic variation in catecholaminergic function in humans. Front. Integr. Neurosci. 6, 16 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Gärtner, M., Rohde-Liebenau, L., Grimm, S. & Bajbouj, M. Working memory-related frontal theta activity is decreased under acute stress. Psychoneuroendocrinology 43, 105–113 (2014).

    Article  PubMed  Google Scholar 

  34. Cahill, L. & McGaugh, J.L. Modulation of memory storage. Curr. Opin. Neurobiol. 6, 237–242 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. Cahill, L., Prins, B., Weber, M. & McGaugh, J.L. Beta-adrenergic activation and memory for emotional events. Nature 371, 702–704 (1994).

    Article  CAS  PubMed  Google Scholar 

  36. Mazure, C.M. ed. Does Stress Cause Psychiatric Illness? (American Psychiatric Press, Washington, DC, 1995).

  37. Raune, D., Kuipers, E. & Bebbington, P. Stressful and intrusive life events preceding first episode psychosis. Epidemiol. Psichiatr. Soc. 18, 221–228 (2009).

    Article  PubMed  Google Scholar 

  38. Hammen, C. & Gitlin, M. Stress reactivity in bipolar patients and its relation to prior history of disorder. Am. J. Psychiatry 154, 856–857 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. Weissman, M.M. et al. Cross-national epidemiology of major depression and bipolar disorder. J. Am. Med. Assoc. 276, 293–299 (1996).

    Article  CAS  Google Scholar 

  40. Breslau, N. The epidemiology of trauma, PTSD, and other posttrauma disorders. Trauma Violence Abuse 10, 198–210 (2009).

    Article  PubMed  Google Scholar 

  41. Shansky, R.M. et al. Estrogen mediates sex differences in stress-induced prefrontal cortex dysfunction. Mol. Psychiatry 9, 531–538 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Bebbington, P.E. et al. The influence of age and sex on the prevalence of depressive conditions: report from the National Survey of Psychiatric Morbidity. Psychol. Med. 28, 9–19 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Johansson, L. et al. Common psychosocial stressors in middle-aged women related to longstanding distress and increased risk of Alzheimer's disease: a 38-year longitudinal population study. BMJ Open 3, e003142 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wilson, R.S. et al. Chronic psychological distress and risk of Alzheimer's disease in old age. Neuroepidemiology 27, 143–153 (2006).

    Article  PubMed  Google Scholar 

  45. Deutch, A.Y. & Roth, R.H. The determinants of stress-induced activation of the prefrontal cortical dopamine system. Prog. Brain Res. 85, 367–402 (1990).

    Article  CAS  PubMed  Google Scholar 

  46. Bromberg-Martin, E.S., Matsumoto, M. & Hikosaka, O. Dopamine in motivational control: rewarding, aversive, and alerting. Neuron 68, 815–834 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kodama, T., Hikosaka, K., Honda, Y., Kojima, T. & Watanabe, M. Higher dopamine release induced by less rather than more preferred reward during a working memory task in the primate prefrontal cortex. Behav. Brain Res. 266, 104–107 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Van Bockstaele, E.J., Colago, E.E. & Valentino, R.J. Amygdaloid corticotropin-releasing factor targets locus coeruleus dendrites: substrate for the co-ordination of emotional and cognitive limbs of the stress response. J. Neuroendocrinol. 10, 743–757 (1998).

    Article  CAS  PubMed  Google Scholar 

  49. Nakane, H., Shimizu, N. & Hori, T. Stress-induced norepinephrine release in the rat prefrontal cortex measured by microdialysis. Am. J. Physiol. 267, R1559–R1566 (1994).

    CAS  PubMed  Google Scholar 

  50. Chandler, D.J., Gao, W.J. & Waterhouse, B.D. Heterogeneous organization of the locus coeruleus projections to prefrontal and motor cortices. Proc. Natl. Acad. Sci. USA 111, 6816–6821 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gründemann, D., Schechinger, B., Rappold, G.A. & Schomig, E. Molecular identification of the cortisone-sensitive extraneuronal catecholamine transporter. Nat. Neurosci. 1, 349–351 (1998).

    Article  PubMed  Google Scholar 

  52. Bangasser, D.A. & Valentino, R.J. Sex differences in molecular and cellular substrates of stress. Cell. Mol. Neurobiol. 32, 709–723 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kritzer, M.F. & Kohama, S.G. Ovarian hormones influence morphology, distribution and density of tyrosine hydroxylase immunoreactive axons in the dorsolateral prefrontal cortex of adult rhesus monkeys. J. Comp. Neurol. 395, 1–17 (1998).

    Article  CAS  PubMed  Google Scholar 

  54. Birnbaum, S., Gobeske, K.T., Auerbach, J., Taylor, J.R. & Arnsten, A.F.T. A role for norepinephrine in stress-induced cognitive deficits: α-1-adrenoceptor mediation in prefrontal cortex. Biol. Psychiatry 46, 1266–1274 (1999).

    Article  CAS  PubMed  Google Scholar 

  55. Zahrt, J., Taylor, J.R., Mathew, R.G. & Arnsten, A.F.T. Supranormal stimulation of dopamine D1 receptors in the rodent prefrontal cortex impairs spatial working memory performance. J. Neurosci. 17, 8528–8535 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Arnsten, A.F.T., Mathew, R., Ubriani, R., Taylor, J.R. & Li, B.-M. Alpha-1 noradrenergic receptor stimulation impairs prefrontal cortical cognitive function. Biol. Psychiatry 45, 26–31 (1999).

    Article  CAS  PubMed  Google Scholar 

  57. Birnbaum, S.G. et al. Protein kinase C overactivity impairs prefrontal cortical regulation of working memory. Science 306, 882–884 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Hermans, E.J. et al. Stress-related noradrenergic activity prompts large-scale neural network reconfiguration. Science 334, 1151–1153 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Schwabe, L., Tegenthoff, M., Höffken, O. & Wolf, O.T. Simultaneous glucocorticoid and noradrenergic activity disrupts the neural basis of goal-directed action in the human brain. J. Neurosci. 32, 10146–10155 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Vijayraghavan, S. et al. Inverted-U dopamine D1 receptor actions on prefrontal neurons engaged in working memory. Nat. Neurosci. 10, 376–384 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Ramos, B.P. et al. The beta-1 adrenergic antagonist, betaxolol, improves working memory performance in rats and monkeys. Biol. Psychiatry 58, 894–900 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Gamo, N.J. et al. Stress impairs prefrontal cortical function via D1 dopamine receptor interactions with HCN channels. Biol. Psychiatry doi:10.1016/j.biopsych.2015.01.009 (4 February 2015).

  63. Wang, M., Vijayraghavan, S. & Goldman-Rakic, P.S. Selective D2 receptor actions on the functional circuitry of working memory. Science 303, 853–856 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Ferry, B., Roozendaal, B. & McGaugh, J.L. Basolateral amygdala noradrenergic influences on memory storage are mediated by an interaction between β- and α1-adrenoceptors. J. Neurosci. 19, 5119–5123 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Everitt, B.J. et al. Neural mechanisms underlying the vulnerability to develop compulsive drug-seeking habits and addiction. Phil. Trans. R. Soc. Lond. B 363, 3125–3135 (2008).

    Article  Google Scholar 

  66. Waterhouse, B.D., Moises, H.C. & Woodward, D.J. Noradrenergic modulation of somatosensory cortical neuronal responses to iontophoretically applied putative transmitters. Exp. Neurol. 69, 30–49 (1980).

    Article  CAS  PubMed  Google Scholar 

  67. Mouradian, R.D., Seller, F.M. & Waterhouse, B.D. Noradrenergic potentiation of excitatory transmitter action in cerebrocortical slices: evidence of mediation by an alpha1-receptor-linked second messenger pathway. Brain Res. 546, 83–95 (1991).

    Article  CAS  PubMed  Google Scholar 

  68. Bonini, J.S., Cammarota, M., Kerr, D.S., Bevilaqua, L.R. & Izquierdo, I. Inhibition of PKC in basolateral amygdala and posterior parietal cortex impairs consolidation of inhibitory avoidance memory. Pharmacol. Biochem. Behav. 80, 63–67 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Barsegyan, A., Mackenzie, S.M., Kurose, B.D., McGaugh, J.L. & Roozendaal, B. Glucocorticoids in the prefrontal cortex enhance memory consolidation and impair working memory by a common neural mechanism. Proc. Natl. Acad. Sci. USA 107, 16655–16660 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Seib, L.M. & Wellman, C.L. Daily injections alter spine density in rat medial prefrontal cortex. Neurosci. Lett. 337, 29–32 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Liston, C. et al. Stress-induced alterations in prefrontal cortical dendritic morphology predict selective impairments in perceptual attentional set-shifting. J. Neurosci. 26, 7870–7874 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Radley, J.J. et al. Reversibility of apical dendritic retraction in the rat medial prefrontal cortex following repeated stress. Exp. Neurol. 196, 199–203 (2005).

    Article  PubMed  Google Scholar 

  73. Shansky, R.M., Hamo, C., Hof, P.R., McEwen, B.S. & Morrison, J.H. Stress-induced dendritic remodeling in the prefrontal cortex is circuit specific. Cereb. Cortex 19, 2479–2484 (2009) This study used tract tracing to be able to identify the connections of neurons in rat medial PFC and showed that those positioned to excite the amygdala had expanded dendrites following chronic stress, while those with cortical projections showed the expected atrophy with chronic stress exposure. These effects were particularly prevalent in females, consistent with the greater stress response in females with circulating estrogen. This study thus revealed an important heterogeneity within the PFC, reminding us that some circuits within the PFC actually promote the stress response.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Ota, K.T. et al. REDD1 is essential for stress-induced synaptic loss and depressive behavior. Nat. Med. 20, 531–535 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hains, A.B. et al. Inhibition of protein kinase C signaling protects prefrontal cortex dendritic spines and cognition from the effects of chronic stress. Proc. Natl. Acad. Sci. USA 106, 17957–17962 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Bloss, E.B. et al. Evidence for reduced experience-dependent dendritic spine plasticity in the aging prefrontal cortex. J. Neurosci. 31, 7831–7839 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Vyas, A., Mitra, R., Shankaranarayana Rao, B.S. & Chattarji, S. Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons. J. Neurosci. 22, 6810–6818 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gilabert-Juan, J., Castillo-Gomez, E., Guirado, R., Moltó, M.D. & Nacher, J. Chronic stress alters inhibitory networks in the medial prefrontal cortex of adult mice. Brain Struct. Funct. 218, 1591–1605 (2013).

    Article  CAS  PubMed  Google Scholar 

  79. Ansell, E.B., Rando, K., Tuit, K., Guarnaccia, J. & Sinha, R. Cumulative adversity and smaller gray matter volume in medial prefrontal, anterior cingulate, and insula regions. Biol. Psychiatry 72, 57–64 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Liston, C., McEwen, B.S. & Casey, B.J. Psychosocial stress reversibly disrupts prefrontal processing and attentional control. Proc. Natl. Acad. Sci. USA 106, 912–917 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kim, P. et al. Effects of childhood poverty and chronic stress on emotion regulatory brain function in adulthood. Proc. Natl. Acad. Sci. USA 110, 18442–18447 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Soares, J.M. et al. Stress-induced changes in human decision-making are reversible. Transl. Psychiatry 2, e131 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Melia, K.R. et al. Coordinate regulation of the cyclic AMP system with firing rate and expression of tyrosine hydroxylase in the rat locus coeruleus: effects of chronic stress and drug treatments. J. Neurochem. 58, 494–502 (1992).

    Article  CAS  PubMed  Google Scholar 

  84. Miner, L.H. et al. Chronic stress increases the plasmalemmal distribution of the norepinephrine transporter and the coexpression of tyrosine hydroxylase in norepinephrine axons in the prefrontal cortex. J. Neurosci. 26, 1571–1578 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Fan, Y., Chen, P., Li, Y. & Zhu, M.Y. Effects of chronic social defeat on expression of dopamine β-hydroxylase in rat brains. Synapse 67, 300–312 (2013).

    Article  CAS  PubMed  Google Scholar 

  86. Bethea, C.L., Kim, A. & Cameron, J.L. Function and innervation of the locus ceruleus in a macaque model of functional hypothalamic amenorrhea. Neurobiol. Dis. 50, 96–106 (2013).

    Article  PubMed  Google Scholar 

  87. Nestler, E.J., Alreja, M. & Aghajanian, G.K. Molecular control of locus coeruleus neurotransmission. Biol. Psychiatry 46, 1131–1139 (1999).

    Article  CAS  PubMed  Google Scholar 

  88. Bissette, G., Klimek, V., Pan, J., Stockmeier, C. & Ordway, G. Elevated concentrations of CRF in the locus coeruleus of depressed subjects. Neuropsychopharmacology 28, 1328–1335 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. Sciolino, N.R. et al. Galanin mediates features of neural and behavioral stress resilience afforded by exercise. Neuropharmacology 89, 255–264 (2015).

    Article  CAS  PubMed  Google Scholar 

  90. Mizoguchi, K. et al. Chronic stress induces impairment of spatial working memory due to prefrontal dopaminergic dysfunction. J. Neurosci. 20, 1568–1574 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Matuszewich, L., McFadden, L.M., Friedman, R.D. & Frye, C.A. Neurochemical and behavioral effects of chronic unpredictable stress. Behav. Pharmacol. 25, 557–566 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Lin, G.L., Borders, C.B., Lundewall, L.J. & Wellman, C.L. D1 receptors regulate dendritic morphology in normal and stressed prelimbic cortex. Psychoneuroendocrinology 51, 101–111 (2015).

    Article  CAS  PubMed  Google Scholar 

  93. Rakic, P., Bourgeois, J.P. & Goldman-Rakic, P.S. Synaptic development of the cerebral cortex: implications for learning, memory, and mental illness. Prog. Brain Res. 102, 227–243 (1994).

    Article  CAS  PubMed  Google Scholar 

  94. Dumitriu, D. et al. Selective changes in thin spine density and morphology in monkey prefrontal cortex correlate with aging-related cognitive impairment. J. Neurosci. 30, 7507–7515 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Chung, W.S. et al. Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways. Nature 504, 394–400 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Calabrese, B. & Halpain, S. Essential role for the PKC target MARCKS in maintaining dendritic spine morphology. Neuron 48, 77–90 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Hains, A.B., Yabe, Y. & Arnsten, A.F.T. Chronic stimulation of alpha-2A-adrenoceptors with guanfacine protects rodent prefrontal cortex dendritic spines and cognition from the effects of chronic stress. Neurobiol. Stress 2, 1–9 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Wang, M. et al. α2A-adrenoceptor stimulation strengthens working memory networks by inhibiting cAMP-HCN channel signaling in prefrontal cortex. Cell 129, 397–410 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. DeBock, F. et al. α2-adrenoreceptor activation inhibits LTP and LTD in the basolateral amygdala: involvement of Gi/o-protein-mediated modulation of Ca2+-channels and inwardly rectifying K+-channels in LTD. Eur. J. Neurosci. 17, 1411–1424 (2003).

    Article  CAS  PubMed  Google Scholar 

  100. Morrow, B.A., George, T.P. & Roth, R.H. Noradrenergic α-2 agonists have anxiolytic-like actions on stress-related behavior and mesoprefrontal dopamine biochemistry. Brain Res. 1027, 173–178 (2004).

    Article  CAS  PubMed  Google Scholar 

  101. Engberg, G. & Eriksson, E. Effects of alpha 2-adrenoceptor agonists on locus coeruleus firing rate and brain noradrenaline turnover in N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ)-treated rats. Naunyn Schmiedebergs Arch. Pharmacol. 343, 472–477 (1991).

    Article  CAS  PubMed  Google Scholar 

  102. Gyoneva, S. & Traynelis, S.F. Norepinephrine modulates the motility of resting and activated microglia via different adrenergic receptors. J. Biol. Chem. 288, 15291–15302 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Childress, A.C. & Berry, S.A. Pharmacotherapy of attention-deficit hyperactivity disorder in adolescents. Drugs 72, 309–325 (2012).

    Article  CAS  PubMed  Google Scholar 

  104. Yanagawa, Y., Hiraide, S., Matsumoto, M. & Togashi, H. Rapid induction of REDD1 gene expression in macrophages in response to stress-related catecholamines. Immunol. Lett. 158, 109–115 (2014).

    Article  CAS  PubMed  Google Scholar 

  105. Katiyar, S. et al. REDD1, an inhibitor of mTOR signalling, is regulated by the CUL4A–DDB1 ubiquitin ligase. EMBO Rep. 10, 866–872 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kauser, H., Sahu, S., Kumar, S. & Panjwani, U. Guanfacine is an effective countermeasure for hypobaric hypoxia-induced cognitive decline. Neuroscience 254, 110–119 (2013).

    Article  CAS  PubMed  Google Scholar 

  107. Kobori, N., Clifton, G.L. & Dash, P.K. Enhanced catecholamine synthesis in the prefrontal cortex after traumatic brain injury: implications for prefrontal dysfunction. J. Neurotrauma 23, 1094–1102 (2006).

    Article  PubMed  Google Scholar 

  108. Kobori, N., Hu, B. & Dash, P.K. Altered adrenergic receptor signaling following traumatic brain injury contributes to working memory dysfunction. Neuroscience 172, 293–302 (2011).

    Article  CAS  PubMed  Google Scholar 

  109. Bryant, R. Post-traumatic stress disorder vs traumatic brain injury. Dialogues Clin. Neurosci. 13, 251–262 (2011).

    PubMed  PubMed Central  Google Scholar 

  110. Sivanandam, T.M. & Thakur, M.K. Traumatic brain injury: a risk factor for Alzheimer's disease. Neurosci. Biobehav. Rev. 36, 1376–1381 (2012).

    Article  PubMed  Google Scholar 

  111. Arnsten, A.F.T., Raskind, M., Taylor, F.B. & Connor, D.F. The effects of stress exposure on prefrontal cortex: translating basic research into successful treatments for post-traumatic stress disorder. Neurobiol. Stress 1, 89–99 (2015). This paper reviews how studies of stress effects in animals have led to successful treatments for PTSD in humans.

    Article  PubMed  Google Scholar 

  112. McKee, S. et al. A translational investigation targeting stress-reactivity and prefrontal cognitive control with guanfacine for smoking cessation. J. Psychopharmacol. 29, 300–311 (2015).

    Article  CAS  PubMed  Google Scholar 

  113. Fox, H., Sofuoglu, M. & Sinha, R. Guanfacine enhances inhibitory control and attentional shifting in early abstinent cocaine-dependent individuals. J. Psychopharmacol. 29, 312–323 (7 January 2015).

  114. Connor, D.F., Grasso, D.J., Slivinsky, M.D., Pearson, G.S. & Banga, A. An open-label study of guanfacine extended release for traumatic stress related symptoms in children and adolescents. J. Child Adolesc. Psychopharmacol. 23, 244–251 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Licznerski, P. & Duman, R.S. Remodeling of axo-spinous synapses in the pathophysiology and treatment of depression. Neuroscience 251, 33–50 (2013).

    Article  CAS  PubMed  Google Scholar 

  116. Savitz, J.B., Price, J.L. & Drevets, W.C. Neuropathological and neuromorphometric abnormalities in bipolar disorder: view from the medial prefrontal cortical network. Neurosci. Biobehav. Rev. 42, 132–147 (2014).

    Article  CAS  PubMed  Google Scholar 

  117. Glantz, L.A. & Lewis, D.A. Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch. Gen. Psychiatry 57, 65–73 (2000).

    Article  CAS  PubMed  Google Scholar 

  118. Black, J.E. et al. Pathology of layer V pyramidal neurons in the prefrontal cortex of patients with schizophrenia. Am. J. Psychiatry 161, 742–744 (2004).

    Article  PubMed  Google Scholar 

  119. Arion, D. et al. Distinctive transcriptome alterations of prefrontal pyramidal neurons in schizophrenia and schizoaffective disorder. Mol. Psychiatry doi:10.1038/mp.2014.171 (6 January 2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Chubb, J.E., Bradshaw, N.J., Soares, D.C., Porteous, D.J. & Millar, J.K. The DISC locus in psychiatric illness. Mol. Psychiatry 13, 36–64 (2008).

    Article  CAS  PubMed  Google Scholar 

  121. Millar, J.K. et al. DISC1 and PDE4B are interacting genetic factors in schizophrenia that regulate cAMP signaling. Science 310, 1187–1191 (2005).

    Article  CAS  PubMed  Google Scholar 

  122. Cannon, T.D. et al. Association of DISC1/TRAX haplotypes with schizophrenia, reduced prefrontal gray matter, and impaired short- and long-term memory. Arch. Gen. Psychiatry 62, 1205–1213 (2005).

    Article  CAS  PubMed  Google Scholar 

  123. Szeszko, P.R. et al. DISC1 is associated with prefrontal cortical gray matter and positive symptoms in schizophrenia. Biol. Psychol. 79, 103–110 (2008).

    Article  PubMed  Google Scholar 

  124. Camargo, L.M. et al. Disrupted in Schizophrenia 1 interactome: evidence for the close connectivity of risk genes and a potential synaptic basis for schizophrenia. Mol. Psychiatry 12, 74–86 (2007).

    Article  CAS  PubMed  Google Scholar 

  125. MacKenzie, K.F. et al. Phosphorylation of cAMP-specific PDE4A5 (phosphodiesterase-4A5) by MK2 (MAPKAPK2) attenuates its activation through protein kinase A phosphorylation. Biochem. J. 435, 755–769 (2011).

    Article  CAS  PubMed  Google Scholar 

  126. Kirkpatrick, B. et al. DISC1 immunoreactivity at the light and ultrastructural level in the human neocortex. J. Comp. Neurol. 497, 436–450 (2006).

    Article  PubMed  Google Scholar 

  127. Paspalas, C.D., Min Wang, M. & Arnsten, A.F.T. Constellation of HCN channels and cAMP regulating proteins in dendritic spines of the primate prefrontal cortex—potential substrate for working memory deficits in schizophrenia. Cereb. Cortex 23, 1643–1654 (2013).

    Article  PubMed  Google Scholar 

  128. Deng, X. et al. Positive association of phencyclidine-responsive genes, PDE4A and PLAT, with schizophrenia. Am. J. Med. Genet. B. Neuropsychiatr. Genet. 156B, 850–858 (2011).

    Article  CAS  PubMed  Google Scholar 

  129. El-Hassar, L. et al. Disrupted in Schizophrenia 1 modulates medial prefrontal cortex pyramidal neuron activity through cAMP regulation of transient receptor potential C and small-conductance K+ channels. Biol. Psychiatry 76, 476–485 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Gamo, N.J. et al. Role of Disrupted in Schizophrenia 1 (DISC1) in stress-induced prefrontal cognitive dysfunction. Transl. Psychiatry 3, e328 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Hayashi-Takagi, A. et al. Disrupted-in-Schizophrenia 1 (DISC1) regulates spines of the glutamate synapse via Rac1. Nat. Neurosci. 13, 327–332 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Hayashi-Takagi, A. et al. PAKs inhibitors ameliorate schizophrenia-associated dendritic spine deterioration in vitro and in vivo during late adolescence. Proc. Natl. Acad. Sci. USA 111, 6461–6466 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Bachmann, V.A., Bister, K. & Stefan, E. Interplay of PKA and Rac: fine-tuning of Rac localization and signaling. Small GTPases 4, 247–251 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Hill, J.J., Hashimoto, T. & Lewis, D.A. Molecular mechanisms contributing to dendritic spine alterations in the prefrontal cortex of subjects with schizophrenia. Mol. Psychiatry 11, 557–566 (2006).

    Article  CAS  PubMed  Google Scholar 

  135. Ide, M. & Lewis, D.A. Altered cortical CDC42 signaling pathways in schizophrenia: implications for dendritic spine deficits. Biol. Psychiatry 68, 25–32 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Briggs, M.W. & Sacks, D.B. IQGAP1 as signal integrator: Ca2+, calmodulin, Cdc42 and the cytoskeleton. FEBS Lett. 542, 7–11 (2003).

    Article  CAS  PubMed  Google Scholar 

  137. Giannakopoulos, P. et al. Tangle and neuron numbers, but not amyloid load, predict cognitive status in Alzheimer's disease. Neurology 60, 1495–1500 (2003).

    Article  CAS  PubMed  Google Scholar 

  138. Pearson, R.C.A., Esiri, M.M., Hiorns, R.W., Wilcock, G.K. & Powell, T.P.S. Anatomical correlates of the distribution of the pathological changes in the neocortex in Alzheimer disease. Proc. Natl. Acad. Sci. USA 82, 4531–4534 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Lewis, D.A., Campbell, M.J., Terry, R.D. & Morrison, J.H. Laminar and regional distributions of neurofibrillary tangles and neuritic plaques in Alzheimer's disease: a quantitative study of visual and auditory cortices. J. Neurosci. 7, 1799–1808 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Guo, Z. et al. Head injury and the risk of AD in the MIRAGE study. Neurology 54, 1316–1323 (2000).

    Article  CAS  PubMed  Google Scholar 

  141. Altmann, A., Tian, L., Henderson, V.W., Greicius, M.D. & Alzheimer's Disease Neuroimaging Initiative Investigators. Sex modifies the APOE-related risk of developing Alzheimer disease. Ann. Neurol. 75, 563–573 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Okawa, Y., Ishiguro, K. & Fujita, S.C. Stress-induced hyperphosphorylation of tau in the mouse brain. FEBS Lett. 535, 183–189 (2003).

    Article  CAS  PubMed  Google Scholar 

  143. Bhalla, A. et al. The location and trafficking routes of the neuronal retromer and its role in amyloid precursor protein transport. Neurobiol. Dis. 47, 126–134 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Cam, J.A. & Bu, G. Modulation of β-amyloid precursor protein trafficking and processing by the low density lipoprotein receptor family. Mol. Neurodegener. 1, 8 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Yajima, R. et al. ApoE-isoform-dependent cellular uptake of amyloid-β is mediated by lipoprotein receptor LR11/SorLA. Biochem. Biophys. Res. Commun. 456, 482–488 (2015).

    Article  CAS  PubMed  Google Scholar 

  146. Renner, M. et al. Deleterious effects of amyloid β oligomers acting as an extracellular scaffold for mGluR5. Neuron 66, 739–754 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Um, J.W. et al. Metabotropic glutamate receptor 5 is a coreceptor for Alzheimer aβ oligomer bound to cellular prion protein. Neuron 79, 887–902 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Doens, D. & Fernández, P.L. Microglia receptors and their implications in the response to amyloid β for Alzheimer's disease pathogenesis. J. Neuroinflammation 11, 48 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Acin-Perez, R., Gatti, D.L., Bai, Y. & Manfredi, G. Protein phosphorylation and prevention of cytochrome oxidase inhibition by ATP: coupled mechanisms of energy metabolism regulation. Cell Metab. 13, 712–719 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Melov, S. et al. Mitochondrial oxidative stress causes hyperphosphorylation of tau. PLoS ONE 2, e536 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Gratitude to S. Katrancha for discussions regarding spine dynamics. A.F.T.A. is supported by a US National Institutes of Health Director's Pioneer Award DP1AG047744-01, R01AG043430-01A1 and RO1MH100064-01A1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amy F T Arnsten.

Ethics declarations

Competing interests

A.F.T.A. and Yale University receive royalties from Shire Pharmaceuticals from the sales of Intuniv (extended release guanfacine) for the treatment of pediatric ADHD. They do not receive royalties from generic forms of Intuniv.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arnsten, A. Stress weakens prefrontal networks: molecular insults to higher cognition. Nat Neurosci 18, 1376–1385 (2015). https://doi.org/10.1038/nn.4087

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.4087

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing