Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

A hierarchy of intrinsic timescales across primate cortex

Abstract

Specialization and hierarchy are organizing principles for primate cortex, yet there is little direct evidence for how cortical areas are specialized in the temporal domain. We measured timescales of intrinsic fluctuations in spiking activity across areas and found a hierarchical ordering, with sensory and prefrontal areas exhibiting shorter and longer timescales, respectively. On the basis of our findings, we suggest that intrinsic timescales reflect areal specialization for task-relevant computations over multiple temporal ranges.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spike-count autocorrelation reveals a hierarchical ordering of intrinsic timescales.
Figure 2: Links between intrinsic timescales and longer functional timescales.

Similar content being viewed by others

References

  1. Lennie, P. Perception 27, 889–935 (1998).

    Article  CAS  Google Scholar 

  2. Badre, D. & D'Esposito, M. Nat. Rev. Neurosci. 10, 659–669 (2009).

    Article  CAS  Google Scholar 

  3. Hasson, U., Yang, E., Vallines, I., Heeger, D.J. & Rubin, N. J. Neurosci. 28, 2539–2550 (2008).

    Article  CAS  Google Scholar 

  4. Honey, C.J. et al. Neuron 76, 423–434 (2012).

    Article  CAS  Google Scholar 

  5. Churchland, M.M. et al. Nat. Neurosci. 13, 369–378 (2010).

    Article  CAS  Google Scholar 

  6. Goris, R.L.T., Movshon, J.A. & Simoncelli, E.P. Nat. Neurosci. 17, 858–865 (2014).

    Article  CAS  Google Scholar 

  7. Maimon, G. & Assad, J.A. Neuron 62, 426–440 (2009).

    Article  CAS  Google Scholar 

  8. Churchland, A.K. et al. Neuron 69, 818–831 (2011).

    Article  CAS  Google Scholar 

  9. Felleman, D.J. & Van Essen, D.C. Cereb. Cortex 1, 1–47 (1991).

    Article  CAS  Google Scholar 

  10. Barbas, H. & Rempel-Clower, N. Cereb. Cortex 7, 635–646 (1997).

    Article  CAS  Google Scholar 

  11. Bernacchia, A., Seo, H., Lee, D. & Wang, X.-J. Nat. Neurosci. 14, 366–372 (2011).

    Article  CAS  Google Scholar 

  12. Goldman, M.S., Compte, A. & Wang, X.-J. in Encyclopedia of Neuroscience (ed. Squire, L.R.) 165–178 (Academic Press, Oxford, 2008).

  13. Buracas, G.T., Zador, A.M., DeWeese, M.R. & Albright, T.D. Neuron 20, 959–969 (1998).

    Article  CAS  Google Scholar 

  14. Salinas, E., Hernandez, A., Zainos, A. & Romo, R. J. Neurosci. 20, 5503–5515 (2000).

    Article  CAS  Google Scholar 

  15. Wang, X.-J. Neuron 36, 955–968 (2002).

    Article  CAS  Google Scholar 

  16. Wang, H., Stradtman, G.G., Wang, X.-J. & Gao, W.-J. Proc. Natl. Acad. Sci. USA 105, 16791–16796 (2008).

    Article  CAS  Google Scholar 

  17. Wang, Y. et al. Nat. Neurosci. 9, 534–542 (2006).

    Article  CAS  Google Scholar 

  18. Fuster, J. The Prefrontal Cortex (Academic Press, New York, 2008).

  19. Amatrudo, J.M. et al. J. Neurosci. 32, 13644–13660 (2012).

    Article  CAS  Google Scholar 

  20. Elston, G.N. Cereb. Cortex 13, 1124–1138 (2003).

    Article  Google Scholar 

  21. Bisley, J.W., Zaksas, D., Droll, J.A. & Pasternak, T. J. Neurophysiol. 91, 286–300 (2004).

    Article  Google Scholar 

  22. Zaksas, D. & Pasternak, T. J. Neurophysiol. 94, 4156–4167 (2005).

    Article  Google Scholar 

  23. Zaksas, D. & Pasternak, T. J. Neurosci. 26, 11726–11742 (2006).

    Article  CAS  Google Scholar 

  24. Hussar, C.R. & Pasternak, T. Neuron 64, 730–743 (2009).

    Article  CAS  Google Scholar 

  25. Hussar, C.R. & Pasternak, T. J. Neurosci. 32, 2747–2761 (2012).

    Article  CAS  Google Scholar 

  26. Freedman, D.J. & Assad, J.A. Nature 443, 85–88 (2006).

    Article  CAS  Google Scholar 

  27. Swaminathan, S.K. & Freedman, D.J. Nat. Neurosci. 15, 315–320 (2012).

    Article  CAS  Google Scholar 

  28. Seo, H., Barraclough, D.J. & Lee, D. J. Neurosci. 29, 7278–7289 (2009).

    Article  CAS  Google Scholar 

  29. Seo, H., Barraclough, D.J. & Lee, D. Cereb. Cortex 17 (suppl. 1), i110–i117 (2007).

    Article  Google Scholar 

  30. Seo, H. & Lee, D. J. Neurosci. 27, 8366–8377 (2007).

    Article  CAS  Google Scholar 

  31. Kennerley, S.W., Dahmubed, A.F., Lara, A.H. & Wallis, J.D. J. Cogn. Neurosci. 21, 1162–1178 (2009).

    Article  Google Scholar 

  32. Kennerley, S.W. & Wallis, J.D. J. Neurosci. 29, 3259–3270 (2009).

    Article  CAS  Google Scholar 

  33. Hosokawa, T., Kennerley, S.W., Sloan, J. & Wallis, J.D. J. Neurosci. 33, 17385–17397 (2013).

    Article  CAS  Google Scholar 

  34. Padoa-Schioppa, C. & Assad, J.A. Nature 441, 223–226 (2006).

    Article  CAS  Google Scholar 

  35. Padoa-Schioppa, C. & Assad, J.A. Nat. Neurosci. 11, 95–102 (2008).

    Article  CAS  Google Scholar 

  36. Cai, X. & Padoa-Schioppa, C. J. Neurosci. 32, 3791–3808 (2012).

    Article  CAS  Google Scholar 

  37. Cai, X. & Padoa-Schioppa, C. Neuron 81, 1140–1151 (2014).

    Article  CAS  Google Scholar 

  38. Ponce-Alvarez, A., Nácher, V., Luna, R., Riehle, A. & Romo, R. J. Neurosci. 32, 11956–11969 (2012).

    Article  CAS  Google Scholar 

  39. Ogawa, T. & Komatsu, H. J. Neurophysiol. 103, 2433–2445 (2010).

    Article  Google Scholar 

  40. Nishida, S. et al. Cereb. Cortex 24, 1671–1685 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

We thank R. Chaudhuri and H.F. Song for discussions, and W. Chaisangmongkon and A. Ponce-Alvarez for assistance with data sets. Funding was provided by US Office of Naval Research grant N00014-13-1-0297 and US National Institutes of Health (NIH) grant R01MH062349 (X.-J.W.); NIH grant R01DA029330 (D.L.); NIH grants R01EY11749 and T32EY07125 (T.P.); NIH grant R01DA032758 and Whitehall Foundation grant 2010-12-13 (C.P.-S.); NIH grants R01DA19028 and P01NS040813 (J.D.W.); grants from Dirección General de Asuntos del Personal Académico–Universidad Nacional Autónoma de México and Consejo Nacional de Ciencia y Tecnología México (R.R.); and NIH grant R01EY019041 (D.J.F.).

Author information

Authors and Affiliations

Authors

Contributions

J.D.M., A.B. and X.-J.W. designed the research and wrote the manuscript. J.D.M. analyzed the data and prepared the figures. D.J.F., R.R., J.D.W., X.C., C.P.-S., T.P., H.S. and D.L. contributed the electrophysiological data. All authors contributed to editing and revising the manuscript.

Corresponding author

Correspondence to Xiao-Jing Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Spike-count autocorrelations in time.

Normalized autocorrelation matrices are shown for each area in a dataset. The matrix shows the mean correlation of the spike count in each time bin with the spike count in every other time bin, averaged across neurons. These show that the autocorrelation is roughly stationary across time during the foreperiod.

Supplementary Figure 2 Single neurons exhibit heterogeneous autocorrelations.

Light grey traces show the spike-count autocorrelation as function of time lag for single neurons, averaged across time points. Circles mark the population mean at each time lag, and the curve shows the exponential fit to the population data. The observation of single-neuron heterogeneity reinforces the interpretation of intrinsic timescale as a characteristic at the population level rather than at the single-neuron level.

Supplementary Figure 3 Differences in mean firing rates across areas do not account for hierarchy of intrinsic timescales.

Mean firing rates varied substantially across datasets and across areas within datasets. There was no significant dependence of intrinsic timescale on mean firing rate (P = 0.51, t(9) = −0.69, two-tailed t-test, regression slope m = −5.5 ± 7.9 ms/Hz; P = 0.16, rs = −0.34, Spearman’s rank correlation, two-tailed). Error bars mark s.e.

Supplementary Figure 4 Autocorrelation offset reflects trial-to-trial correlation.

Trial-to-trial correlation was calculated as the Pearson correlation coefficient between the foreperiod spike count in each trial and the spike count in the next trial. We hypothesized that autocorrelation offset would positively correlate with trial-to-trial correlation, and found a significant positive correlation between them. This indicates that the autocorrelation offset includes contributions from variability at timescales are comparable to or longer than the trial duration. Colored lines show trends for individual datasets. The arrow shows the slope of dependence from a regression analysis (slope m = 1.3 ± 0.3). Error bars mark s.e.

Supplementary Figure 5 Hierarchical ordering of areas by timescale of reward memory.

In the Lee dataset, we previously measured timescales of the decay of memory traces for past rewards in single-neuron firing rates, while monkeys performed a competitive decision-making task. (a) The cumulative distribution of reward timescales in LIP (n = 160), LPFC (n = 243), and ACC (n = 134). For neurons fit with the sum of two reward timescales, we used the harmonic mean of the two timescales. (b) Median reward timescale for the three areas. Error bars mark s.e.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Note (PDF 7450 kb)

Supplementary Methods Checklist

(PDF 382 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murray, J., Bernacchia, A., Freedman, D. et al. A hierarchy of intrinsic timescales across primate cortex. Nat Neurosci 17, 1661–1663 (2014). https://doi.org/10.1038/nn.3862

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3862

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing