Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

SIRT1 collaborates with ATM and HDAC1 to maintain genomic stability in neurons

This article has been updated

Abstract

Defects in DNA repair have been linked to cognitive decline with age and neurodegenerative disease, yet the mechanisms that protect neurons from genotoxic stress remain largely obscure. We sought to characterize the roles of the NAD+-dependent deacetylase SIRT1 in the neuronal response to DNA double-strand breaks (DSBs). We found that SIRT1 was rapidly recruited to DSBs in postmitotic neurons, where it showed a synergistic relationship with ataxia telangiectasia mutated (ATM). SIRT1 recruitment to breaks was ATM dependent; however, SIRT1 also stimulated ATM autophosphorylation and activity and stabilized ATM at DSB sites. After DSB induction, SIRT1 also bound the neuroprotective class I histone deacetylase HDAC1. We found that SIRT1 deacetylated HDAC1 and stimulated its enzymatic activity, which was necessary for DSB repair through the nonhomologous end-joining pathway. HDAC1 mutations that mimic a constitutively acetylated state rendered neurons more susceptible to DNA damage, whereas pharmacological SIRT1 activators that promoted HDAC1 deacetylation also reduced DNA damage in two mouse models of neurodegeneration. We propose that SIRT1 is an apical transducer of the DSB response and that SIRT1 activation offers an important therapeutic avenue in neurodegeneration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SIRT1 is necessary for initial DSB signaling events and DNA repair in neurons.
Figure 2: SIRT1 and HDAC1 interact physically and localize to DSB sites in neurons.
Figure 3: SIRT1 stabilizes HDAC1 at sites of DNA DSBs in neurons.
Figure 4: SIRT1 deacetylates HDAC1 at residue Lys432 and stimulates its enzymatic activity.
Figure 5: Deacetylation of HDAC1 is essential for DSB repair in neurons.
Figure 6: Pharmacological SIRT1 activation can protect neurons against DNA damage in vivo.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

Change history

  • 26 July 2013

    In the version of this article initially published online, author Biafra Ahanonu's name was misspelled Ahononu. The error has been corrected for the print, PDF and HTML versions of this article.

References

  1. Lu, T. et al. Gene regulation and DNA damage in the ageing human brain. Nature 429, 883–891 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Rass, U., Ahel, I. & West, S.C. Defective DNA repair and neurodegenerative disease. Cell 130, 991–1004 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Adamec, E., Vonsattel, J.P. & Nixon, R.A. DNA strand breaks in Alzheimer's disease. Brain Res. 849, 67–77 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Ferrante, R.J. et al. Evidence of increased oxidative damage in both sporadic and familial amyotrophic lateral sclerosis. J. Neurochem. 69, 2064–2074 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Nouspikel, T. & Hanawalt, P.C. When parsimony backfires: neglecting DNA repair may doom neurons in Alzheimer's disease. Bioessays 25, 168–173 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Gan, L. & Mucke, L. Paths of convergence: sirtuins in aging and neurodegeneration. Neuron 58, 10–14 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kim, D. et al. SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer's disease and amyotrophic lateral sclerosis. EMBO J. 26, 3169–3179 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cruz, J.C., Tseng, H.C., Goldman, J.A., Shih, H. & Tsai, L.H. Aberrant Cdk5 activation by p25 triggers pathological events leading to neurodegeneration and neurofibrillary tangles. Neuron 40, 471–483 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Cruz, J.C. et al. p25/cyclin-dependent kinase 5 induces production and intraneuronal accumulation of amyloid-β in vivo. J. Neurosci. 26, 10536–10541 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kim, D. et al. Deregulation of HDAC1 by p25/Cdk5 in neurotoxicity. Neuron 60, 803–817 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Singh, N.P., McCoy, M.T., Tice, R.R. & Schneider, E.L. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res. 175, 184–191 (1988).

    Article  CAS  PubMed  Google Scholar 

  12. Seluanov, A., Mittelman, D., Pereira-Smith, O.M., Wilson, J.H. & Gorbunova, V. DNA end joining becomes less efficient and more error-prone during cellular senescence. Proc. Natl. Acad. Sci. USA 101, 7624–7629 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Berkovich, E., Monnat, R.J. Jr. & Kastan, M.B. Roles of ATM and NBS1 in chromatin structure modulation and DNA double-strand break repair. Nat. Cell Biol. 9, 683–690 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Berkovich, E., Monnat, R.J. Jr. & Kastan, M.B. Assessment of protein dynamics and DNA repair following generation of DNA double-strand breaks at defined genomic sites. Nat. Protoc. 3, 915–922 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Shiloh, Y. ATM and related protein kinases: safeguarding genome integrity. Nat. Rev. Cancer 3, 155–168 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Polo, S.E., Kaidi, A., Baskcomb, L., Galanty, Y. & Jackson, S.P. Regulation of DNA-damage responses and cell-cycle progression by the chromatin remodelling factor CHD4. EMBO J. 29, 3130–3139 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Qiu, Y. et al. HDAC1 acetylation is linked to progressive modulation of steroid receptor-induced gene transcription. Mol. Cell 22, 669–679 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Yang, T. et al. Acetylation of histone deacetylase 1 regulates NuRD corepressor complex activity. J. Biol. Chem. 287, 40279–40291 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dai, H. et al. SIRT1 activation by small molecules: kinetic and biophysical evidence for direct interaction of enzyme and activator. J. Biol. Chem. 285, 32695–32703 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Luo, Y. et al. Trans-regulation of histone deacetylase activities through acetylation. J. Biol. Chem. 284, 34901–34910 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Miller, K.M. et al. Human HDAC1 and HDAC2 function in the DNA-damage response to promote DNA nonhomologous end-joining. Nat. Struct. Mol. Biol. 17, 1144–1151 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yoshiyama, Y. et al. Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron 53, 337–351 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Lee, J.H. & Paull, T.T. Activation and regulation of ATM kinase activity in response to DNA double-strand breaks. Oncogene 26, 7741–7748 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Yuan, Z., Zhang, X., Sengupta, N., Lane, W.S. & Seto, E. SIRT1 regulates the function of the Nijmegen breakage syndrome protein. Mol. Cell 27, 149–162 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sun, Y., Jiang, X., Chen, S., Fernandes, N. & Price, B.D. A role for the Tip60 histone acetyltransferase in the acetylation and activation of ATM. Proc. Natl. Acad. Sci. USA 102, 13182–13187 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ball, A.R. Jr. & Yokomori, K. Damage site chromatin: open or closed? Curr. Opin. Cell Biol. 23, 277–283 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yuan, Z.M. et al. Role for p300 in stabilization of p53 in the response to DNA damage. J. Biol. Chem. 274, 1883–1886 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Ikura, T. et al. Involvement of the TIP60 histone acetylase complex in DNA repair and apoptosis. Cell 102, 463–473 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Sykes, S.M. et al. Acetylation of the p53 DNA-binding domain regulates apoptosis induction. Mol. Cell 24, 841–851 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bouras, T. et al. SIRT1 deacetylation and repression of p300 involves lysine residues 1020/1024 within the cell cycle regulatory domain 1. J. Biol. Chem. 280, 10264–10276 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Peng, L. et al. SIRT1 negatively regulates the activities, functions, and protein levels of hMOF and TIP60. Mol. Cell. Biol. 32, 2823–2836 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yankner, B.A., Lu, T. & Loerch, P. The aging brain. Annu. Rev. Pathol. 3, 41–66 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Gao, J. et al. A novel pathway regulates memory and plasticity via SIRT1 and miR-134. Nature 466, 1105–1109 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Oberdoerffer, P. et al. SIRT1 redistribution on chromatin promotes genomic stability but alters gene expression during aging. Cell 135, 907–918 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Montgomery, R.L. et al. Histone deacetylases 1 and 2 redundantly regulate cardiac morphogenesis, growth, and contractility. Genes Dev. 21, 1790–1802 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cheng, H.L. et al. Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc. Natl. Acad. Sci. USA 100, 10794–10799 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yang, X.J. & Seto, E. The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men. Nat. Rev. Mol. Cell Biol. 9, 206–218 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Takamiya, K., Mao, L., Huganir, R.L. & Linden, D.J. The glutamate receptor–interacting protein family of GluR2-binding proteins is required for long-term synaptic depression expression in cerebellar Purkinje cells. J. Neurosci. 28, 5752–5755 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Davis, J.B. & Maher, P. Protein kinase C activation inhibits glutamate-induced cytotoxicity in a neuronal cell line. Brain Res. 652, 169–173 (1994).

    Article  CAS  PubMed  Google Scholar 

  40. Vonesch, C. & Unser, M. A fast thresholded landweber algorithm for wavelet-regularized multidimensional deconvolution. IEEE Trans. Image Process. 17, 539–549 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Carpenter, A.E. et al. CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 7, R100 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Dundr, M. & Misteli, T. Measuring dynamics of nuclear proteins by photobleaching. Curr. Protoc. Cell Biol. Chapter 13, Unit 13.5 (2003).

  43. Snapp, E.L., Altan, N. & Lippincott-Schwartz, J. Measuring protein mobility by photobleaching GFP chimeras in living cells. Curr. Protoc. Cell Biol. Chapter 21, Unit 21.1 (2003).

  44. Roy, A., Kucukural, A. & Zhang, Y. I-TASSER: a unified platform for automated protein structure and function prediction. Nat. Protoc. 5, 725–738 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang, Y. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9, 40 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Finnin, M.S. et al. Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature 401, 188–193 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Kruhlak, M.J., Celeste, A. & Nussenzweig, A. Monitoring DNA breaks in optically highlighted chromatin in living cells by laser scanning confocal microscopy. Methods Mol. Biol. 523, 125–140 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Nowak, D.E., Tian, B. & Brasier, A.R. Two-step cross-linking method for identification of NF-κB gene network by chromatin immunoprecipitation. Biotechniques 39, 715–725 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Zeng, P.Y., Vakoc, C.R., Chen, Z.C., Blobel, G.A. & Berger, S.L. In vivo dual cross-linking for identification of indirect DNA-associated proteins by chromatin immunoprecipitation. Biotechniques 41, 694, 696, 698 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Haumaitre, C., Lenoir, O. & Scharfmann, R. Histone deacetylase inhibitors modify pancreatic cell fate determination and amplify endocrine progenitors. Mol. Cell Bio. 28, 6373–6383 (2008).

    Article  CAS  Google Scholar 

  51. Zhao, Y., Zhang, W. & White, M.A. Capillary high-performance liquid chromatography/mass spectrometric analysis of proteins from affinity-purified plasma membrane. Anal. Chem. 75, 3751–3757 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank F.W. Alt (Harvard Medical School) and E.N. Olson (University of Texas Southwestern Medical Center) for providing the Sirt1loxP/loxP and Hdac1loxP/loxP mice, respectively; R. Huganir (Johns Hopkins University) for providing the lentiviral Cre constructs; V. Suri, J. Ellis and G. Vlasuk (Sirtris) for providing compound #10 and, together with J. Gräff, for critical comments on the manuscript; M. Kastan (St. Jude's Medical Research Hospital) for gifting the I-PpoI-ER construct; and V. Gorbunova (University of Rochester) for providing the NHEJ constructs. This work was supported by funding from US National Institutes of Health (NIH) PO1 grant AG27916, the Howard Hughes Medical Institute, the Neurodegeneration Consortium and the Glenn award for research in biological mechanisms of aging to L.-H.T., NIH grant R01 HL095674 to Y.Q. and NIH grant U54 RR020389 to Y.Z. M.M.D. was supported by NIH training grants T32 GM007484 and T32 MH081728.

Author information

Authors and Affiliations

Authors

Contributions

This study was designed by M.M.D., R.M. and L.-H.T. and was directed and coordinated by L.-H.T. M.M.D. and R.M. planned and performed most of the experiments. L.P. maintained the Sirt1loxP/loxP and Hdac1loxP/loxP mice and, together with B.A., helped with the microirradiation experiments. Y.C. and Y.Z. conducted the mass spectrometry analysis of HDAC1 acetylation. D.K. and J.G. performed some preliminary experiments with CK-p25 mice, and J.G. performed the compound #10 treatment and subsequent analysis of CK-p25 mice. P.-C.P. contributed to statistical analysis and quantification of several experiments, and Y.Q. developed and provided the antibody to acetylated HDAC1 Lys432. R.M., M.M.D. and L.-H.T. wrote the manuscript with critical input from all the authors.

Corresponding author

Correspondence to Li-Huei Tsai.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures and Text

Supplementary Figures 1–5 (PDF 9691 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dobbin, M., Madabhushi, R., Pan, L. et al. SIRT1 collaborates with ATM and HDAC1 to maintain genomic stability in neurons. Nat Neurosci 16, 1008–1015 (2013). https://doi.org/10.1038/nn.3460

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3460

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing