Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cortical activation of accumbens hyperpolarization-active NMDARs mediates aversion-resistant alcohol intake

Subjects

Abstract

Compulsive drinking despite serious adverse medical, social and economic consequences is a characteristic of alcohol use disorders in humans. Although frontal cortical areas have been implicated in alcohol use disorders, little is known about the molecular mechanisms and pathways that sustain aversion-resistant intake. Here, we show that nucleus accumbens core (NAcore) NMDA-type glutamate receptors and medial prefrontal (mPFC) and insula glutamatergic inputs to the NAcore are necessary for aversion-resistant alcohol consumption in rats. Aversion-resistant intake was associated with a new type of NMDA receptor adaptation, in which hyperpolarization-active NMDA receptors were present at mPFC and insula but not amygdalar inputs in the NAcore. Accordingly, inhibition of Grin2c NMDA receptor subunits in the NAcore reduced aversion-resistant alcohol intake. None of these manipulations altered intake when alcohol was not paired with an aversive consequence. Our results identify a mechanism by which hyperpolarization-active NMDA receptors under mPFC- and insula-to-NAcore inputs sustain aversion-resistant alcohol intake.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Inhibition of NMDARs in the NAcore reduced aversion-resistant alcohol intake.
Figure 2: Halorhodopsin inhibition of mPFC- and INS-to-NAcore inputs reduced quinine-resistant alcohol intake.
Figure 3: Halorhodopsin inhibition of mPFC- and INS-to-NAcore inputs reduced footshock-resistant alcohol intake.
Figure 4: NAcore neurons from alcohol-drinking rats showed hyperpolarization-active NMDARs under mPFC-to-NAcore inputs.
Figure 5: NAcore neurons from alcohol-drinking rats showed hyperpolarization-active NMDARs under mPFC and INS but not BLA inputs to the NAcore.
Figure 6: NMDARs regulate evoked action potential firing under mPFC-to-NAcore inputs from alcohol-drinking but not naive rats.
Figure 7: Grin2c but not Grin2d or Grin2b subunits mediate hyperpolarization-active NMDARs under mPFC-to-NAcore terminals and promote quinine-resistant alcohol intake.

Similar content being viewed by others

References

  1. Koob, G.F. & Volkow, N.D. Neurocircuitry of addiction. Neuropsychopharmacology 35, 217–238 (2010).

    Article  PubMed  Google Scholar 

  2. Naqvi, N.H. & Bechara, A. The insula and drug addiction: an interoceptive view of pleasure, urges, and decision-making. Brain Struct. Funct. 214, 435–450 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Tiffany, S.T. & Conklin, C.A. A cognitive processing model of alcohol craving and compulsive alcohol use. Addiction 95 (suppl. 2), S145–S153 (2000).

    Article  Google Scholar 

  4. Spanagel, R. Alcoholism: a systems approach from molecular physiology to addictive behavior. Physiol. Rev. 89, 649–705 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Wolffgramm, J., Galli, G., Thimm, F. & Heyne, A. Animal models of addiction: models for therapeutic strategies? J. Neural Transm. 107, 649–668 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Hopf, F.W., Chang, S.J., Sparta, D.R., Bowers, M.S. & Bonci, A. Motivation for alcohol becomes resistant to quinine adulteration after 3–4 months of intermittent alcohol self-administration. Alcohol. Clin. Exp. Res. 34, 1565–1573 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Breese, G.R., Sinha, R. & Heilig, M. Chronic alcohol neuroadaptation and stress contribute to susceptibility for alcohol craving and relapse. Pharmacol. Ther. 129, 149–171 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. de Visser, L., Baars, A.M., van 't Klooster, J. & van den Bos, R. Transient inactivation of the medial prefrontal cortex affects both anxiety and decision-making in male Wistar rats. Front Neurosci 5, 102 (2011).

    PubMed  PubMed Central  Google Scholar 

  9. Balleine, B.W. & O'Doherty, J.P. Human and rodent homologies in action control: corticostriatal determinants of goal-directed and habitual action. Neuropsychopharmacology 35, 48–69 (2010).

    Article  PubMed  Google Scholar 

  10. Bassareo, V., De Luca, M.A. & Di Chiara, G. Differential expression of motivational stimulus properties by dopamine in nucleus accumbens shell versus core and prefrontal cortex. J. Neurosci. 22, 4709–4719 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Peters, J., Kalivas, P.W. & Quirk, G.J. Extinction circuits for fear and addiction overlap in prefrontal cortex. Learn. Mem. 16, 279–288 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  12. LaLumiere, R.T. & Kalivas, P.W. Glutamate release in the nucleus accumbens core is necessary for heroin seeking. J. Neurosci. 28, 3170–3177 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Di Pietro, N.C., Black, Y.D. & Kantak, K.M. Context-dependent prefrontal cortex regulation of cocaine self-administration and reinstatement behaviors in rats. Eur. J. Neurosci. 24, 3285–3298 (2006).

    Article  PubMed  Google Scholar 

  14. Sesack, S.R. & Grace, A.A. Cortico-basal ganglia reward network: microcircuitry. Neuropsychopharmacology 35, 27–47 (2010).

    Article  PubMed  Google Scholar 

  15. Chen, B.T. et al. Rescuing cocaine-induced prefrontal cortex hypoactivity prevents compulsive cocaine seeking. Nature 496, 359–362 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Craig, A.D. How do you feel—now? The anterior insula and human awareness. Nat. Rev. Neurosci. 10, 59–70 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Filbey, F.M. et al. Exposure to the taste of alcohol elicits activation of the mesocorticolimbic neurocircuitry. Neuropsychopharmacology 33, 1391–1401 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Britt, J.P. et al. Synaptic and behavioral profile of multiple glutamatergic inputs to the nucleus accumbens. Neuron 76, 790–803 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zahm, D.S. Functional-anatomical implications of the nucleus accumbens core and shell subterritories. Ann. NY Acad. Sci. 877, 113–128 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Gerfen, C.R. Basal ganglia. in The Rat Nervous System 3rd edn. (ed. Paxinos, G.) 455–508 (Elsevier Academic, 2004).

  21. Roitman, M.F., Wheeler, R.A. & Carelli, R.M. Nucleus accumbens neurons are innately tuned for rewarding and aversive taste stimuli, encode their predictors, and are linked to motor output. Neuron 45, 587–597 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Singh, T., McDannald, M.A., Haney, R.Z., Cerri, D.H. & Schoenbaum, G. Nucleus accumbens core and shell are necessary for reinforcer devaluation effects on pavlovian conditioned responding. Front. Integr. Neurosci. 4, 126 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  23. da Cunha, I.C. et al. The microinjection of AMPA receptor antagonist into the accumbens shell, but not into the accumbens core, induces anxiolysis in an animal model of anxiety. Behav. Brain Res. 188, 91–99 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. McFarland, K., Davidge, S.B., Lapish, C.C. & Kalivas, P.W. Limbic and motor circuitry underlying footshock-induced reinstatement of cocaine-seeking behavior. J. Neurosci. 24, 1551–1560 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rassnick, S., Pulvirenti, L. & Koob, G.F. Oral ethanol self-administration in rats is reduced by the administration of dopamine and glutamate receptor antagonists into the nucleus accumbens. Psychopharmacology (Berl.) 109, 92–98 (1992).

    Article  CAS  Google Scholar 

  26. Gremel, C.M. & Cunningham, C.L. Involvement of amygdala dopamine and nucleus accumbens NMDA receptors in ethanol-seeking behavior in mice. Neuropsychopharmacology 34, 1443–1453 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Hodge, C.W. & Cox, A.A. The discriminative stimulus effects of ethanol are mediated by NMDA and GABAA receptors in specific limbic brain regions. Psychopharmacology (Berl.) 139, 95–107 (1998).

    Article  CAS  Google Scholar 

  28. Stuber, G.D. et al. Excitatory transmission from the amygdala to nucleus accumbens facilitates reward seeking. Nature 475, 377–380 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tye, K.M. et al. Amygdala circuitry mediating reversible and bidirectional control of anxiety. Nature 471, 358–362 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Witten, I.B. et al. Cholinergic interneurons control local circuit activity and cocaine conditioning. Science 330, 1677–1681 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sparta, D.R. et al. Construction of implantable optical fibers for long-term optogenetic manipulation of neural circuits. Nat. Protoc. 7, 12–23 (2012).

    Article  CAS  Google Scholar 

  32. Stefanik, M.T. et al. Optogenetic inhibition of cocaine seeking in rats. Addict. Biol. 18, 50–53 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Cull-Candy, S.G. & Leszkiewicz, D.N. Role of distinct NMDA receptor subtypes at central synapses. Sci. STKE 2004, re16 (2004).

    PubMed  Google Scholar 

  34. Zhang, Y., Llinas, R.R. & Lisman, J.E. Inhibition of NMDARs in the nucleus reticularis of the thalamus produces delta frequency bursting. Front. Neural Circuits 3, 20 (2009).

    PubMed  PubMed Central  Google Scholar 

  35. Low, C.M. & Wee, K.S. New insights into the not-so-new NR3 subunits of N-methyl-D-aspartate receptor: localization, structure, and function. Mol. Pharmacol. 78, 1–11 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Lasek, A.W., Janak, P.H., He, L., Whistler, J.L. & Heberlein, U. Downregulation of mu opioid receptor by RNA interference in the ventral tegmental area reduces ethanol consumption in mice. Genes Brain Behav. 6, 728–735 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Shi, M. et al. Effects of NR2A and NR2B-containing N-methyl-D-aspartate receptors on neuronal-firing properties. Neuroreport 22, 762–766 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Wang, J. et al. Ethanol induces long-term facilitation of NR2B-NMDA receptor activity in the dorsal striatum: implications for alcohol drinking behavior. J. Neurosci. 27, 3593–3602 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Maldonado-Irizarry, C.S. & Kelley, A.E. Differential behavioral effects following microinjection of an NMDA antagonist into nucleus accumbens subregions. Psychopharmacology (Berl.) 116, 65–72 (1994).

    Article  CAS  Google Scholar 

  40. Di Ciano, P. & Everitt, B.J. Dissociable effects of antagonism of NMDA and AMPA/KA receptors in the nucleus accumbens core and shell on cocaine-seeking behavior. Neuropsychopharmacology 25, 341–360 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Backström, P. & Hyytia, P. Involvement of AMPA/kainate, NMDA, and mGlu5 receptors in the nucleus accumbens core in cue-induced reinstatement of cocaine seeking in rats. Psychopharmacology (Berl.) 192, 571–580 (2007).

    Article  CAS  Google Scholar 

  42. Yamamoto, T. Neural substrates for the processing of cognitive and affective aspects of taste in the brain. Arch. Histol. Cytol. 69, 243–255 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Sinclair, C.M., Cleva, R.M., Hood, L.E., Olive, M.F. & Gass, J.T. mGluR5 receptors in the basolateral amygdala and nucleus accumbens regulate cue-induced reinstatement of ethanol-seeking behavior. Pharmacol. Biochem. Behav. 101, 329–335 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. June, H.L. et al. GABA(A) receptors containing α5 subunits in the CA1 and CA3 hippocampal fields regulate ethanol-motivated behaviors: an extended ethanol reward circuitry. J. Neurosci. 21, 2166–2177 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Roberts, A.J., Cole, M. & Koob, G.F. Intra-amygdala muscimol decreases operant ethanol self-administration in dependent rats. Alcohol. Clin. Exp. Res. 20, 1289–1298 (1996).

    Article  CAS  PubMed  Google Scholar 

  46. Chaudhri, N., Sahuque, L.L. & Janak, P.H. Ethanol seeking triggered by environmental context is attenuated by blocking dopamine D1 receptors in the nucleus accumbens core and shell in rats. Psychopharmacology (Berl.) 207, 303–314 (2009).

    Article  CAS  Google Scholar 

  47. Raeder, H. et al. Expression of N-methyl-d-aspartate (NMDA) receptor subunits and splice variants in an animal model of long-term voluntary alcohol self-administration. Drug Alcohol Depend. 96, 16–21 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Hagino, Y. et al. Essential role of NMDA receptor channel epsilon4 subunit (GluN2D) in the effects of phencyclidine, but not methamphetamine. PLoS ONE 5, e13722 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Obiang, P. et al. GluN2D subunit-containing NMDA receptors control tissue plasminogen activator-mediated spatial memory. J. Neurosci. 32, 12726–12734 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wenzel, A. et al. Distribution of NMDA receptor subunit proteins NR2A, 2B, 2C and 2D in rat brain. Neuroreport 7, 45–48 (1995).

    Article  CAS  PubMed  Google Scholar 

  51. Simms, J.A. et al. Intermittent access to 20% ethanol induces high ethanol consumption in Long-Evans and Wistar rats. Alcohol. Clin. Exp. Res. 32, 1816–1823 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rhodes, J.S. et al. Mouse inbred strain differences in ethanol drinking to intoxication. Genes Brain Behav. 6, 1–18 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Li, J., Bian, W., Dave, V. & Ye, J.H. Blockade of GABAA receptors in the paraventricular nucleus of the hypothalamus attenuates voluntary ethanol intake and activates the hypothalamic-pituitary-adrenocortical axis. Addict. Biol. 16, 600–614 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Hopf, F.W. et al. Reduced nucleus accumbens SK channel activity enhances alcohol seeking during abstinence. Neuron 65, 682–694 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Deroche-Gamonet, V., Belin, D. & Piazza, P.V. Evidence for addiction-like behavior in the rat. Science 305, 1014–1017 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Belin, D., Berson, N., Balado, E., Piazza, P.V. & Deroche-Gamonet, V. High-novelty-preference rats are predisposed to compulsive cocaine self-administration. Neuropsychopharmacology 36, 569–579 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Cooper, A., Barnea-Ygael, N., Levy, D., Shaham, Y. & Zangen, A. A conflict rat model of cue-induced relapse to cocaine seeking. Psychopharmacology (Berl.) 194, 117–125 (2007).

    Article  CAS  Google Scholar 

  58. Vanderschuren, L.J. & Everitt, B.J. Drug seeking becomes compulsive after prolonged cocaine self-administration. Science 305, 1017–1019 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Berendse, H.W., Galis-de Graaf, Y. & Groenewegen, H.J. Topographical organization and relationship with ventral striatal compartments of prefrontal corticostriatal projections in the rat. J. Comp. Neurol. 316, 314–347 (1992).

    Article  CAS  PubMed  Google Scholar 

  60. Gibb, S.L. et al. Lyn kinase regulates mesolimbic dopamine release: implication for alcohol reward. J. Neurosci. 31, 2180–2187 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank V. Kharazia and the Gallo Center P50 National Institute on Alcohol Abuse and Alcoholism (NIAAA) AA017072 Histology Core for assistance with histology and R. Maiya for shRNA assistance. Supported by NIAAA RO1AA015358 (F.W.H.), National Institute on Drug Abuse F32DA028065 (T.S.), NIAAA/NIH RO1A/MH13438 (D.R.) and funds provided by the State of California for medical research for alcohol substance abuse through the University of California San Francisco (D.R., A.B., R.O.M.).

Author information

Authors and Affiliations

Authors

Contributions

T.S., B.T.C., D.R., R.O.M., A.B. and F.W.H. designed experiments. T.S., S.-J.C., J.A.S., S.L.G. and F.W.H. collected and analyzed data. S.L.G., J.D., B.T.C., B.K.H., D.R. and R.O.M. generated and tested NMDAR shRNAs. T.S., F.W.H. and R.O.M. wrote the paper.

Corresponding authors

Correspondence to Antonello Bonci or F Woodward Hopf.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures and Text

Supplementary Table 1 and Supplementary Figures 1–5 (PDF 27429 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seif, T., Chang, SJ., Simms, J. et al. Cortical activation of accumbens hyperpolarization-active NMDARs mediates aversion-resistant alcohol intake. Nat Neurosci 16, 1094–1100 (2013). https://doi.org/10.1038/nn.3445

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3445

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing