Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Prefrontal mechanisms of behavioral flexibility, emotion regulation and value updating

Abstract

Two ideas have dominated neuropsychology concerning the orbitofrontal cortex (OFC). One holds that OFC regulates emotion and enhances behavioral flexibility through inhibitory control. The other ascribes to OFC a role in updating valuations on the basis of current motivational states. Neuroimaging, neurophysiological and clinical observations are consistent with either or both hypotheses. Although these hypotheses are compatible in principle, we present results supporting the latter view of OFC function and arguing against the former. We found that excitotoxic, fiber-sparing lesions confined to OFC in monkeys did not alter either behavioral flexibility, as measured by object reversal learning, or emotion regulation, as assessed by fear of snakes. A follow-up experiment indicated that a previously reported loss of inhibitory control resulted from damage to nearby fiber tracts and not from OFC dysfunction. Thus, OFC has a more specialized role in reward-guided behavior and emotion than has been thought, a function that includes value updating.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Excitotoxic lesions of OFC.
Figure 2: Excitotoxic lesions of OFC did not disrupt object reversal learning.
Figure 3: Excitotoxic lesions of OFC did not alter emotional responses, but disrupted monkeys' ability to link objects with food value.
Figure 4: Strip lesions in posterior OFC.
Figure 5: Monkeys with aspiration lesions of a narrow strip of posterior OFC, like monkeys with complete aspiration lesions of OFC, were impaired on object reversal learning and showed reduced emotional responsiveness.

Similar content being viewed by others

References

  1. Bechara, A., Damasio, H. & Damasio, A.R. Emotion, decision making and the orbitofrontal cortex. Cereb. Cortex 10, 295–307 (2000).

    Article  CAS  Google Scholar 

  2. Davidson, R.J., Putnam, K.M. & Larson, C.L. Dysfunction in the neural circuitry of emotion regulation—a possible prelude to violence. Science 289, 591–594 (2000).

    Article  CAS  Google Scholar 

  3. Saver, J.L. & Damasio, A.R. Preserved access and processing of social knowledge in a patient with acquired sociopathy due to ventromedial frontal damage. Neuropsychologia 29, 1241–1249 (1991).

    Article  CAS  Google Scholar 

  4. Izquierdo, A., Suda, R.K. & Murray, E.A. Comparison of the effects of bilateral orbital prefrontal cortex lesions and amygdala lesions on emotional responses in rhesus monkeys. J. Neurosci. 25, 8534–8542 (2005).

    Article  CAS  Google Scholar 

  5. Murray, E.A., O'Doherty, J.P. & Schoenbaum, G. What we know and do not know about the functions of the orbitofrontal cortex after 20 years of cross-species studies. J. Neurosci. 27, 8166–8169 (2007).

    Article  CAS  Google Scholar 

  6. Hornak, J. et al. Reward-related reversal learning after surgical excisions in orbito-frontal or dorsolateral prefrontal cortex in humans. J. Cogn. Neurosci. 16, 463–478 (2004).

    Article  CAS  Google Scholar 

  7. Fellows, L.K. & Farah, M.J. Ventromedial frontal cortex mediates affective shifting in humans: evidence from a reversal learning paradigm. Brain 126, 1830–1837 (2003).

    Article  Google Scholar 

  8. Butter, C.M. Perseveration in extinction and in discrimination reversal tasks following selective frontal ablations in Macaca mulatta. Physiol. Behav. 4, 163–171 (1969).

    Article  Google Scholar 

  9. Izquierdo, A., Suda, R.K. & Murray, E.A. Bilateral orbital prefrontal cortex lesions in rhesus monkeys disrupt choices guided by both reward value and reward contingency. J. Neurosci. 24, 7540–7548 (2004).

    Article  CAS  Google Scholar 

  10. Dias, R., Robbins, T.W. & Roberts, A.C. Dissociation in prefrontal cortex of affective and attentional shifts. Nature 380, 69–72 (1996).

    Article  CAS  Google Scholar 

  11. Iversen, S.D. & Mishkin, M. Perseverative interference in monkeys following selective lesions of the inferior prefrontal convexity. Exp. Brain Res. 11, 376–386 (1970).

    Article  CAS  Google Scholar 

  12. Schoenbaum, G., Setlow, B., Nugent, S.L., Saddoris, M.P. & Gallagher, M. Lesions of orbitofrontal cortex and basolateral amygdala complex disrupt acquisition of odor-guided discriminations and reversals. Learn. Mem. 10, 129–140 (2003).

    Article  Google Scholar 

  13. Chudasama, Y. & Robbins, T.W. Dissociable contributions of the orbitofrontal and infralimbic cortex to pavlovian autoshaping and discrimination reversal learning: further evidence for the functional heterogeneity of the rodent frontal cortex. J. Neurosci. 23, 8771–8780 (2003).

    Article  CAS  Google Scholar 

  14. Rolls, E.T., Hornak, J., Wade, D. & McGrath, J. Emotion-related learning in patients with social and emotional changes associated with frontal lobe damage. J. Neurol. Neurosurg. Psychiatry 57, 1518–1524 (1994).

    Article  CAS  Google Scholar 

  15. Rolls, E.T. The Brain and Emotion (Oxford University Press, Oxford, 1999).

  16. Mishkin, M. Perseveration of central sets after frontal lesions in monkeys. in The Frontal Granular Cortex and Behavior (eds. Warren, J.M. & Akert, K.) 219–241 (McGraw-Hill, New York, 1964).

  17. Roberts, A.C. & Wallis, J.D. Inhibitory control and affective processing in the prefrontal cortex: neuropsychological studies in the common marmoset. Cereb. Cortex 10, 252–262 (2000).

    Article  CAS  Google Scholar 

  18. Clark, L., Cools, R. & Robbins, T.W. The neuropsychology of ventral prefrontal cortex: decision-making and reversal learning. Brain Cogn. 55, 41–53 (2004).

    Article  CAS  Google Scholar 

  19. Blair, R.J. Psychopathy, frustration, and reactive aggression: the role of ventromedial prefrontal cortex. Br. J. Psychol. 101, 383–399 (2010).

    Article  CAS  Google Scholar 

  20. Schoenbaum, G., Roesch, M.R., Stalnaker, T.A. & Takahashi, Y.K. A new perspective on the role of the orbitofrontal cortex in adaptive behaviour. Nat. Rev. Neurosci. 10, 885–892 (2009).

    Article  CAS  Google Scholar 

  21. Holland, P.C. & Gallagher, M. Amygdala-frontal interactions and reward expectancy. Curr. Opin. Neurobiol. 14, 148–155 (2004).

    Article  CAS  Google Scholar 

  22. Wallis, J.D. Orbitofrontal cortex and its contribution to decision-making. Annu. Rev. Neurosci. 30, 31–56 (2007).

    Article  CAS  Google Scholar 

  23. Morrison, S.E. & Salzman, C.D. The convergence of information about rewarding and aversive stimuli in single neurons. J. Neurosci. 29, 11471–11483 (2009).

    Article  CAS  Google Scholar 

  24. Tremblay, L. & Schultz, W. Relative reward preference in primate orbitofrontal cortex. Nature 398, 704–708 (1999).

    Article  CAS  Google Scholar 

  25. Schoenbaum, G., Chiba, A.A. & Gallagher, M. Neural encoding in orbitofrontal cortex and basolateral amygdala during olfactory discrimination learning. J. Neurosci. 19, 1876–1884 (1999).

    Article  CAS  Google Scholar 

  26. Padoa-Schioppa, C. & Assad, J.A. Neurons in the orbitofrontal cortex encode economic value. Nature 441, 223–226 (2006).

    Article  CAS  Google Scholar 

  27. Walton, M.E., Behrens, T.E., Buckley, M.J., Rudebeck, P.H. & Rushworth, M.F. Separable learning systems in the macaque brain and the role of orbitofrontal cortex in contingent learning. Neuron 65, 927–939 (2010).

    Article  CAS  Google Scholar 

  28. Burke, K.A., Franz, T.M., Miller, D.N. & Schoenbaum, G. The role of the orbitofrontal cortex in the pursuit of happiness and more specific rewards. Nature 454, 340–344 (2008).

    Article  CAS  Google Scholar 

  29. Rudebeck, P.H. & Murray, E.A. Dissociable effects of subtotal lesions within the macaque orbital prefrontal cortex on reward-guided behavior. J. Neurosci. 31, 10569–10578 (2011).

    Article  CAS  Google Scholar 

  30. Kazama, A. & Bachevalier, J. Selective aspiration or neurotoxic lesions of orbital frontal areas 11 and 13 spared monkeys' performance on the object discrimination reversal task. J. Neurosci. 29, 2794–2804 (2009).

    Article  CAS  Google Scholar 

  31. Mineka, S. A primate model of phobic fears. in Theoretical Foundations of Behavior Therapy (eds. Eysenck, H.J. & Martin, I.) 81–111 (Plenum, New York, 1987).

  32. Rudebeck, P.H., Buckley, M.J., Walton, M.E. & Rushworth, M.F. A role for the macaque anterior cingulate gyrus in social valuation. Science 313, 1310–1312 (2006).

    Article  CAS  Google Scholar 

  33. Haber, S.N., Kim, K.S., Mailly, P. & Calzavara, R. Reward-related cortical inputs define a large striatal region in primates that interface with associative cortical connections, providing a substrate for incentive-based learning. J. Neurosci. 26, 8368–8376 (2006).

    Article  CAS  Google Scholar 

  34. Schmahmann, J.D. et al. Association fibre pathways of the brain: parallel observations from diffusion spectrum imaging and autoradiography. Brain 130, 630–653 (2007).

    Article  Google Scholar 

  35. Carmichael, S.T. & Price, J.L. Architectonic subdivision of the orbital and medial prefrontal cortex in the macaque monkey. J. Comp. Neurol. 346, 366–402 (1994).

    Article  CAS  Google Scholar 

  36. Baxter, M.G., Gaffan, D., Kyriazis, D.A. & Mitchell, A.S. Ventrolateral prefrontal cortex is required for performance of a strategy implementation task but not reinforcer devaluation effects in rhesus monkeys. Eur. J. Neurosci. 29, 2049–2059 (2009).

    Article  Google Scholar 

  37. Croxson, P.L. et al. Quantitative investigation of connections of the prefrontal cortex in the human and macaque using probabilistic diffusion tractography. J. Neurosci. 25, 8854–8866 (2005).

    Article  CAS  Google Scholar 

  38. Murray, E.A., Baxter, M.G. & Gaffan, D. Monkeys with rhinal cortex damage or neurotoxic hippocampal lesions are impaired on spatial scene learning and object reversals. Behav. Neurosci. 112, 1291–1303 (1998).

    Article  CAS  Google Scholar 

  39. Chudasama, Y., Izquierdo, A. & Murray, E.A. Distinct contributions of the amygdala and hippocampus to fear expression. Eur. J. Neurosci. 30, 2327–2337 (2009).

    Article  Google Scholar 

  40. Chudasama, Y. et al. The role of the anterior cingulate cortex in choices based on reward value and reward contingency. Cereb. Cortex published online, http://dx.doi.org/10.1093/cercor/bhs266 (2012).

  41. Kitt, C.A., Mitchell, S.J., DeLong, M.R., Wainer, B.H. & Price, D.L. Fiber pathways of basal forebrain cholinergic neurons in monkeys. Brain Res. 406, 192–206 (1987).

    Article  CAS  Google Scholar 

  42. Morrison, J.H., Foote, S.L., O'Connor, D. & Bloom, F.E. Laminar, tangential and regional organization of the noradrenergic innervation of monkey cortex: dopamine-beta-hydroxylase immunohistochemistry. Brain Res. Bull. 9, 309–319 (1982).

    Article  CAS  Google Scholar 

  43. Clarke, H.F., Robbins, T.W. & Roberts, A.C. Lesions of the medial striatum in monkeys produce perseverative impairments during reversal learning similar to those produced by lesions of the orbitofrontal cortex. J. Neurosci. 28, 10972–10982 (2008).

    Article  CAS  Google Scholar 

  44. Passingham, R.E. & Wise, S.P. The Neurobiology of the Prefrontal Cortex: Anatomy, Evolution, and the Origin of Insight (Oxford Univ. Press, 2012).

  45. Bush, E.C., Simons, E.L. & Allman, J.M. High-resolution computed tomography study of the cranium of a fossil anthropoid primate, Parapithecus grangeri: new insights into the evolutionary history of primate sensory systems. Anat. Rec. A Discov. Mol. Cell Evol. Biol. 281, 1083–1087 (2004).

    Article  Google Scholar 

  46. Stevens, J.R., Hallinan, E.V. & Hauser, M.D. The ecology and evolution of patience in two New World monkeys. Biol. Lett. 1, 223–226 (2005).

    Article  Google Scholar 

  47. Murray, E.A., Wise, S.P. & Drevets, W.C. Localization of dysfunction in major depressive disorder: prefrontal cortex and amygdala. Biol. Psychiatry 69, e43–e54 (2011).

    Article  Google Scholar 

  48. Frank, M.J. & Claus, E.D. Anatomy of a decision: striato-orbitofrontal interactions in reinforcement learning, decision making, and reversal. Psychol. Rev. 113, 300–326 (2006).

    Article  Google Scholar 

  49. Gottfried, J.A., O'Doherty, J. & Dolan, R.J. Encoding predictive reward value in human amygdala and orbitofrontal cortex. Science 301, 1104–1107 (2003).

    Article  CAS  Google Scholar 

  50. Watson, K.K. & Platt, M.L. Social signals in primate orbitofrontal cortex. Curr. Biol. 22, 2268–2273 (2012).

    Article  CAS  Google Scholar 

  51. Izquierdo, A. & Murray, E.A. Selective bilateral amygdala lesions in rhesus monkeys fail to disrupt object reversal learning. J. Neurosci. 27, 1054–1062 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Lundgren and E. Howland for assistance with data collection and R. Reoli for help performing surgery. We also thank S. Wise and M. Walton for comments on an earlier version of the manuscript. This work was supported by the Intramural Research Program of the US National Institute of Mental Health.

Author information

Authors and Affiliations

Authors

Contributions

P.H.R. designed the experiment, assisted in surgery, analyzed the data and wrote the manuscript. R.C.S. performed the surgeries and edited the manuscript. A.T.P. and L.S.C. collected and analyzed the data. E.A.M. designed the experiment, performed the surgeries, supervised the project and wrote the manuscript.

Corresponding author

Correspondence to Peter H Rudebeck.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1 and 2 and Supplementary Table 1 (PDF 164 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rudebeck, P., Saunders, R., Prescott, A. et al. Prefrontal mechanisms of behavioral flexibility, emotion regulation and value updating. Nat Neurosci 16, 1140–1145 (2013). https://doi.org/10.1038/nn.3440

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3440

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing