Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Signals in inferotemporal and perirhinal cortex suggest an untangling of visual target information

Abstract

Finding sought visual targets requires our brains to flexibly combine working memory information about what we are looking for with visual information about what we are looking at. To investigate the neural computations involved in finding visual targets, we recorded neural responses in inferotemporal cortex (IT) and perirhinal cortex (PRH) as macaque monkeys performed a task that required them to find targets in sequences of distractors. We found similar amounts of total task-specific information in both areas; however, information about whether a target was in view was more accessible using a linear read-out or, equivalently, was more untangled in PRH. Consistent with the flow of information from IT to PRH, we also found that task-relevant information arrived earlier in IT. PRH responses were well-described by a functional model in which computations in PRH untangle input from IT by combining neurons with asymmetric tuning correlations for target matches and distractors.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Theoretical proposals of the neural mechanisms involved in finding visual targets.
Figure 2: The delayed match-to-sample task and example neural responses.
Figure 3: Population performance.
Figure 4: Additional population performance measures.
Figure 5: Discriminating between classes of models that predict more untangled target match information in PRH than IT.
Figure 6: Modeling the transformation from IT to PRH.
Figure 7: The neural mechanisms underlying untangling.

Similar content being viewed by others

References

  1. Salinas, E. Fast remapping of sensory stimuli onto motor actions on the basis of contextual modulation. J. Neurosci. 24, 1113–1118 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Salinas, E. & Bentley, N.M. Gain modulation as a mechanism for switching reference frames, tasks and targets. in Coherent Behavior in Neuronal Networks (eds. Josic, K., Rubin, J., Matias, M. & Romo, R.) 121–142 (Springer, New York, 2009).

  3. Engel, T.A. & Wang, X.J. Same or different? A neural circuit mechanism of similarity-based pattern match decision making. J. Neurosci. 31, 6982–6996 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sugase-Miyamoto, Y., Liu, Z., Wiener, M.C., Optican, L.M. & Richmond, B.J. Short-term memory trace in rapidly adapting synapses of inferior temporal cortex. PLoS Comput. Biol. 4, e1000073 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Miller, E.K., Erickson, C.A. & Desimone, R. Neural mechanisms of visual working memory in prefrontal cortex of the macaque. J. Neurosci. 16, 5154–5167 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tomita, H., Ohbayashi, M., Nakahara, K., Hasegawa, I. & Miyashita, Y. Top-down signal from prefrontal cortex in executive control of memory retrieval. Nature 401, 699–703 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Haenny, P.E., Maunsell, J.H.R. & Schiller, P.H. State-dependent activity in monkey visual cortex. II. Retinal and extraretinal factors in V4. Exp. Brain Res. 69, 245–259 (1988).

    Article  CAS  PubMed  Google Scholar 

  8. Maunsell, J.H.R., Sclar, G., Nealey, T.A. & Depriest, D.D. Extraretinal representations in area V4 in the macaque monkey. Vis. Neurosci. 7, 561–573 (1991).

    Article  CAS  PubMed  Google Scholar 

  9. Bichot, N.P., Rossi, A.F. & Desimone, R. Parallel and serial neural mechanisms for visual search in macaque area V4. Science 308, 529–534 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Chelazzi, L., Miller, E.K., Duncan, J. & Desimone, R. Responses of neurons in macaque area V4 during memory-guided visual search. Cereb. Cortex 11, 761–772 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Eskandar, E.N., Richmond, B.J. & Optican, L.M. Role of inferior temporal neurons in visual memory. II. Temporal encoding of information about visual images, recalled images and behavioral context. J. Neurophysiol. 68, 1277–1295 (1992).

    Article  CAS  PubMed  Google Scholar 

  12. Liu, Z. & Richmond, B.J. Response differences in monkey TE and perirhinal cortex: stimulus association related to reward schedules. J. Neurophysiol. 83, 1677–1692 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Gibson, J.R. & Maunsell, J.H.R. Sensory modality specificity of neural activity related to memory in visual cortex. J. Neurophysiol. 78, 1263–1275 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Lueschow, A., Miller, E.K. & Desimone, R. Inferior temporal mechanisms for invariant object recognition. Cereb. Cortex 4, 523–531 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Miller, E.K. & Desimone, R. Parallel neuronal mechanisms for short-term memory. Science 263, 520–522 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. DiCarlo, J.J. & Cox, D.D. Untangling invariant object recognition. Trends Cogn. Sci. 11, 333–341 (2007).

    Article  PubMed  Google Scholar 

  17. Suzuki, W.A. & Amaral, D.G. Perirhinal and parahippocampal cortices of the macaque monkey: cortical afferents. J. Comp. Neurol. 350, 497–533 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. Meunier, M., Bachevalier, J., Mishkin, M. & Murray, E.A. Effects on visual recognition of combined and separate ablations of the entorhinal and perirhinal cortex in rhesus monkeys. J. Neurosci. 13, 5418–5432 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Buffalo, E.A., Ramus, S.J., Squire, L.R. & Zola, S.M. Perception and recognition memory in monkeys following lesions of area TE and perirhinal cortex. Learn. Mem. 7, 375–382 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cohen, M.R. & Maunsell, J.H. Attention improves performance primarily by reducing interneuronal correlations. Nat. Neurosci. 12, 1594–1600 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Graf, A.B., Kohn, A., Jazayeri, M. & Movshon, J.A. Decoding the activity of neuronal populations in macaque primary visual cortex. Nat. Neurosci. 14, 239–245 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fuster, J.M. & Jervey, J.P. Inferotemporal neurons distinguish and retain behaviorally relevant features of visual stimuli. Science 212, 952–955 (1981).

    Article  CAS  PubMed  Google Scholar 

  23. Reynolds, J.H. & Heeger, D.J. The normalization model of attention. Neuron 61, 168–185 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rust, N.C., Mante, V., Simoncelli, E.P. & Movshon, J.A. How MT cells analyze the motion of visual patterns. Nat. Neurosci. 9, 1421–1431 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Gold, J.I. & Shadlen, M.N. Banburismus and the brain: decoding the relationship between sensory stimuli, decisions and reward. Neuron 36, 299–308 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Simoncelli, E.P. & Heeger, D.J. A model of neuronal responses in visual area MT. Vision Res. 38, 743–761 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Heeger, D.J. Normalization of cell responses in cat striate cortex. Vis. Neurosci. 9, 181–197 (1992).

    Article  CAS  PubMed  Google Scholar 

  28. Adelson, E.H. & Bergen, J.R. Spatiotemporal energy models for the perception of motion. J. Opt. Soc. Am. A 2, 284–299 (1985).

    Article  CAS  PubMed  Google Scholar 

  29. Marr, D. Vision (MIT Press, Cambridge, Massachusetts, 1982).

  30. Rust, N.C. & DiCarlo, J.J. Selectivity and tolerance (“invariance”) both increase as visual information propagates from cortical area V4 to IT. J. Neurosci. 30, 12978–12995 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hung, C.P., Kreiman, G., Poggio, T. & DiCarlo, J.J. Fast readout of object identity from macaque inferior temporal cortex. Science 310, 863–866 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. DiCarlo, J.J., Zoccolan, D. & Rust, N.C. How does the brain solve visual object recognition? Neuron 73, 415–434 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chelazzi, L., Miller, E.K., Duncan, J. & Desimone, R. A neural basis for visual search in inferior temporal cortex. Nature 363, 345–347 (1993).

    Article  CAS  PubMed  Google Scholar 

  34. Maunsell, J.H.R. & Treue, S. Feature-based attention in visual cortex. Trends Neurosci. 29, 317–322 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Rigotti, M., Ben Dayan Rubin, D., Wang, X.J. & Fusi, S. Internal representation of task rules by recurrent dynamics: the importance of the diversity of neural responses. Front Comput. Neurosci. 4, 24 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Najemnik, J. & Geisler, W.S. Optimal eye movement strategies in visual search. Nature 434, 387–391 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Shadlen, M.N. & Newsome, W.T. Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. J. Neurophysiol. 86, 1916–1936 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Law, C.T. & Gold, J.I. Reinforcement learning can account for associative and perceptual learning on a visual-decision task. Nat. Neurosci. 12, 655–663 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lavenex, P., Suzuki, W.A. & Amaral, D.G. Perirhinal and parahippocampal cortices of the macaque monkey: projections to the neocortex. J. Comp. Neurol. 447, 394–420 (2002).

    Article  PubMed  Google Scholar 

  40. Minsky, M. & Papert, S. Perceptrons: an Introduction to Computational Geometry (MIT Press, Cambridge, Massachusetts, 1969).

  41. Wang, P. & Nikolic, D. An LCD monitor with sufficiently precise timing for research in vision. Front. Hum. Neurosci. 5, 85 (2011).

    PubMed  PubMed Central  Google Scholar 

  42. Kelly, R.C. et al. Comparison of recordings from microelectrode arrays and single electrodes in the visual cortex. J. Neurosci. 27, 261–264 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Averbeck, B.B. & Lee, D. Effects of noise correlations on information encoding and decoding. J. Neurophysiol. 95, 3633–3644 (2006).

    Article  PubMed  Google Scholar 

  44. Edmonds, J. & Johnson, E.L. Matching: a well-solved class of integer linear programs. in Combinatorial Structures and Their Applications: Proceedings (ed. Guy, R.K.) (Gordon and Breach, Calgary, 1970).

  45. Efron, B. & Tibshirani, R.J. An Introduction to the Boostrap (CRC Press, 1994).

Download references

Acknowledgements

We thank Y. Cohen, J.A. Movshon, E. Simoncelli and A. Stocker for helpful discussions. We are especially grateful to D. Brainard and J. Gold for detailed comments on the work and on the manuscript. We also thank J. Deutsch for technical assistance and C. Veeder for veterinary support. This work was supported by the National Eye Institute of the US National Institutes of Health (award number R01EY020851), a Sloan Foundation award to N.C.R. and contributions from a National Eye Institute core grant (award number P30EY001583).

Author information

Authors and Affiliations

Authors

Contributions

N.C.R., M.P.W. and M.P. conducted the experiments. M.P. and L.S.U. developed the data alignment software. M.P.W. and N.C.R. sorted the spike waveforms. M.P. and N.C.R. developed and executed the analyses. M.P. and N.C.R. wrote the manuscript. N.C.R. supervised the project.

Corresponding author

Correspondence to Nicole C Rust.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 (PDF 1387 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pagan, M., Urban, L., Wohl, M. et al. Signals in inferotemporal and perirhinal cortex suggest an untangling of visual target information. Nat Neurosci 16, 1132–1139 (2013). https://doi.org/10.1038/nn.3433

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3433

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing