Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Noninvasive brain stimulation: from physiology to network dynamics and back

Abstract

Noninvasive brain stimulation techniques have been widely used for studying the physiology of the CNS, identifying the functional role of specific brain structures and, more recently, exploring large-scale network dynamics. Here we review key findings that contribute to our understanding of the mechanisms underlying the physiological and behavioral effects of these techniques. We highlight recent innovations using noninvasive stimulation to investigate global brain network dynamics and organization. New combinations of these techniques, in conjunction with neuroimaging, will further advance the utility of their application.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Typical NIBS setups.
Figure 2: TMS protocols.
Figure 3: Probing cortical network dynamics with NIBS.
Figure 4: Stimulation focality of tDCS.

Similar content being viewed by others

References

  1. Hummel, F. et al. Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke. Brain 128, 490–499 (2005).

    Article  PubMed  Google Scholar 

  2. Miniussi, C. et al. Efficacy of repetitive transcranial magnetic stimulation/transcranial direct current stimulation in cognitive neurorehabilitation. Brain Stimul. 1, 326–336 (2008).

    Article  PubMed  Google Scholar 

  3. Barker, A.T., Jalinous, R. & Freeston, I.L. Non-invasive magnetic stimulation of human motor cortex. Lancet 325, 1106–1107 (1985).

    Article  Google Scholar 

  4. Huerta, P.T. & Volpe, B.T. Transcranial magnetic stimulation, synaptic plasticity and network oscillations. J. Neuroeng. Rehabil. 6, 7 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Pasley, B.N., Allen, E.A. & Freeman, R.D. State-dependent variability of neuronal responses to transcranial magnetic stimulation of the visual cortex. Neuron 62, 291–303 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Perini, F., Cattaneo, L., Carrasco, M. & Schwarzbach, J.V. Occipital transcranial magnetic stimulation has an activity-dependent suppressive effect. J. Neurosci. 32, 12361–12365 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Utz, K.S., Dimova, V., Oppenlander, K. & Kerkhoff, G. Electrified minds: transcranial direct current stimulation (tDCS) and galvanic vestibular stimulation (GVS) as methods of non-invasive brain stimulation in neuropsychology–a review of current data and future implications. Neuropsychologia 48, 2789–2810 (2010).

    Article  PubMed  Google Scholar 

  8. Nitsche, M.A. & Paulus, W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J. Physiol. (Lond.) 527, 633–639 (2000).

    Article  CAS  Google Scholar 

  9. Nitsche, M.A. et al. Modulating parameters of excitability during and after transcranial direct current stimulation of the human motor cortex. J. Physiol. (Lond.) 568, 291–303 (2005).

    Article  CAS  Google Scholar 

  10. Hallett, M. Transcranial magnetic stimulation: a primer. Neuron 55, 187–199 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Sandrini, M., Umilta, C. & Rusconi, E. The use of transcranial magnetic stimulation in cognitive neuroscience: a new synthesis of methodological issues. Neurosci. Biobehav. Rev. 35, 516–536 (2011).

    Article  PubMed  Google Scholar 

  12. Cohen, L.G. et al. Functional relevance of cross-modal plasticity in blind humans. Nature 389, 180–183 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Chambers, C.D., Payne, J.M., Stokes, M.G. & Mattingley, J.B. Fast and slow parietal pathways mediate spatial attention. Nat. Neurosci. 7, 217–218 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Bütefisch, C.M., Khurana, V., Kopylev, L. & Cohen, L.G. Enhancing encoding of a motor memory in the primary motor cortex by cortical stimulation. J. Neurophysiol. 91, 2110–2116 (2004).

    Article  PubMed  Google Scholar 

  15. Reis, J. et al. Contribution of transcranial magnetic stimulation to the understanding of cortical mechanisms involved in motor control. J. Physiol. (Lond.) 586, 325–351 (2008).

    Article  CAS  Google Scholar 

  16. Ziemann, U., Rothwell, J.C. & Ridding, M.C. Interaction between intracortical inhibition and facilitation in human motor cortex. J. Physiol. (Lond.) 496, 873–881 (1996).

    Article  CAS  Google Scholar 

  17. Buch, E.R., Mars, R.B., Boorman, E.D. & Rushworth, M.F. A network centered on ventral premotor cortex exerts both facilitatory and inhibitory control over primary motor cortex during action reprogramming. J. Neurosci. 30, 1395–1401 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Koch, G. et al. Focal stimulation of the posterior parietal cortex increases the excitability of the ipsilateral motor cortex. J. Neurosci. 27, 6815–6822 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ugawa, Y., Uesaka, Y., Terao, Y., Hanajima, R. & Kanazawa, I. Magnetic stimulation over the cerebellum in humans. Ann. Neurol. 37, 703–713 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Pascual-Leone, A. & Walsh, V. Fast backprojections from the motion to the primary visual area necessary for visual awareness. Science 292, 510–512 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Silvanto, J., Lavie, N. & Walsh, V. Stimulation of the human frontal eye fields modulates sensitivity of extrastriate visual cortex. J. Neurophysiol. 96, 941–945 (2006).

    Article  PubMed  Google Scholar 

  22. Chen, R. et al. Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology 48, 1398–1403 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Censor, N., Dimyan, M.A. & Cohen, L.G. Modification of existing human motor memories is enabled by primary cortical processing during memory reactivation. Curr. Biol. 20, 1545–1549 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Muellbacher, W. et al. Early consolidation in human primary motor cortex. Nature 415, 640–644 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Censor, N. & Cohen, L.G. Using repetitive transcranial magnetic stimulation to study the underlying neural mechanisms of human motor learning and memory. J. Physiol. (Lond.) 589, 21–28 (2011).

    Article  CAS  Google Scholar 

  26. Pascual-Leone, A., Grafman, J. & Hallett, M. Modulation of cortical motor output maps during development of implicit and explicit knowledge. Science 263, 1287–1289 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Kim, Y.H., Park, J.W., Ko, M.H., Jang, S.H. & Lee, P.K. Facilitative effect of high frequency subthreshold repetitive transcranial magnetic stimulation on complex sequential motor learning in humans. Neurosci. Lett. 367, 181–185 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Agostino, R. et al. Effects of 5 Hz subthreshold magnetic stimulation of primary motor cortex on fast finger movements in normal subjects. Exp. Brain Res. 180, 105–111 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Knoch, D., Pascual-Leone, A., Meyer, K., Treyer, V. & Fehr, E. Diminishing reciprocal fairness by disrupting the right prefrontal cortex. Science 314, 829–832 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Rossi, S. et al. Prefrontal cortex in long-term memory: an “interference” approach using magnetic stimulation. Nat. Neurosci. 4, 948–952 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Huang, Y.-Z., Edwards, M.J., Rounis, E., Bhatia, K.P. & Rothwell, J.C. Theta burst stimulation of the human motor cortex. Neuron 45, 201–206 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Antal, A. et al. Direct current stimulation over V5 enhances visuomotor coordination by improving motion perception in humans. J. Cogn. Neurosci. 16, 521–527 (2004).

    Article  PubMed  Google Scholar 

  33. Ragert, P., Vandermeeren, Y., Camus, M. & Cohen, L.G. Improvement of spatial tactile acuity by transcranial direct current stimulation. Clin. Neurophysiol. 119, 805–811 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sparing, R. et al. Bidirectional alterations of interhemispheric parietal balance by non-invasive cortical stimulation. Brain 132, 3011–3020 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Fregni, F. et al. Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Exp. Brain Res. 166, 23–30 (2005).

    Article  PubMed  Google Scholar 

  36. Reis, J. et al. Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proc. Natl. Acad. Sci. USA 106, 1590–1595 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Cohen Kadosh, R., Soskic, S., Iuculano, T., Kanai, R. & Walsh, V. Modulating neuronal activity produces specific and long-lasting changes in numerical competence. Curr. Biol. 20, 2016–2020 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bliss, T.V. & Lomo, T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J. Physiol. (Lond.) 232, 331–356 (1973).

    Article  CAS  Google Scholar 

  39. Dudek, S.M. & Bear, M.F. Bidirectional long-term modification of synaptic effectiveness in the adult and immature hippocampus. J. Neurosci. 13, 2910–2918 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Di Lazzaro, V. et al. The physiological basis of the effects of intermittent theta burst stimulation of the human motor cortex. J. Physiol. (Lond.) 586, 3871–3879 (2008).

    Article  CAS  Google Scholar 

  41. Stefan, K., Kunesch, E., Cohen, L.G., Benecke, R. & Classen, J. Induction of plasticity in the human motor cortex by paired associative stimulation. Brain 123, 572–584 (2000).

    Article  PubMed  Google Scholar 

  42. Wolters, A. et al. A temporally asymmetric Hebbian rule governing plasticity in the human motor cortex. J. Neurophysiol. 89, 2339–2345 (2003).

    Article  PubMed  Google Scholar 

  43. Feldman, D.E. The spike-timing dependence of plasticity. Neuron 75, 556–571 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Buch, E.R., Johnen, V.M., Nelissen, N., O'Shea, J. & Rushworth, M.F. Noninvasive associative plasticity induction in a corticocortical pathway of the human brain. J. Neurosci. 31, 17669–17679 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rizzo, V. et al. Paired associative stimulation of left and right human motor cortex shapes interhemispheric motor inhibition based on a Hebbian mechanism. Cereb. Cortex 19, 907–915 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Huang, Y.Z., Chen, R.S., Rothwell, J.C. & Wen, H.Y. The after-effect of human theta burst stimulation is NMDA receptor dependent. Clin. Neurophysiol. 118, 1028–1032 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Stefan, K., Kunesch, E., Benecke, R., Cohen, L.G. & Classen, J. Mechanisms of enhancement of human motor cortex excitability induced by interventional paired associative stimulation. J. Physiol. (Lond.) 543, 699–708 (2002).

    Article  CAS  Google Scholar 

  48. Stagg, C.J. & Nitsche, M.A. Physiological basis of transcranial direct current stimulation. Neuroscientist 17, 37–53 (2011).

    Article  PubMed  Google Scholar 

  49. Bindman, L.J., Lippold, O.C. & Redfearn, J.W. The action of brief polarizing currents on the cerebral cortex of the rat (1) during current flow and (2) in the production of long-lasting after-effects. J. Physiol. (Lond.) 172, 369–382 (1964).

    Article  CAS  Google Scholar 

  50. Liebetanz, D., Nitsche, M.A., Tergau, F. & Paulus, W. Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability. Brain 125, 2238–2247 (2002).

    Article  PubMed  Google Scholar 

  51. Nitsche, M.A. et al. Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans. J. Physiol. (Lond.) 553, 293–301 (2003).

    Article  CAS  Google Scholar 

  52. Fritsch, B. et al. Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning. Neuron 66, 198–204 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Antal, A. et al. Brain-derived neurotrophic factor (BDNF) gene polymorphisms shape cortical plasticity in humans. Brain Stimul. 3, 230–237 (2010).

    Article  PubMed  Google Scholar 

  54. Cheeran, B. et al. A common polymorphism in the brain-derived neurotrophic factor gene (BDNF) modulates human cortical plasticity and the response to rTMS. J. Physiol. (Lond.) 586, 5717–5725 (2008).

    Article  CAS  Google Scholar 

  55. Figurov, A., Pozzo-Miller, L.D., Olafsson, P., Wang, T. & Lu, B. Regulation of synaptic responses to high-frequency stimulation and LTP by neurotrophins in the hippocampus. Nature 381, 706–709 (1996).

    Article  CAS  PubMed  Google Scholar 

  56. Woo, N.H. et al. Activation of p75NTR by proBDNF facilitates hippocampal long-term depression. Nat. Neurosci. 8, 1069–1077 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Nitsche, M.A. et al. GABAergic modulation of DC stimulation-induced motor cortex excitability shifts in humans. Eur. J. Neurosci. 19, 2720–2726 (2004).

    Article  PubMed  Google Scholar 

  58. Stagg, C.J. et al. Polarity-sensitive modulation of cortical neurotransmitters by transcranial stimulation. J. Neurosci. 29, 5202–5206 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nitsche, M.A., Müller-Dahlhaus, F., Paulus, W. & Ziemann, U. The pharmacology of neuroplasticity induced by non-invasive brain stimulation: building models for the clinical use of CNS active drugs. J. Physiol. (Lond.) 590, 4641–4662 (2012).

    Article  CAS  Google Scholar 

  60. Monte-Silva, K. et al. D2 receptor block abolishes theta burst stimulation-induced neuroplasticity in the human motor cortex. Neuropsychopharmacology 36, 2097–2102 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Monte-Silva, K., Liebetanz, D., Grundey, J., Paulus, W. & Nitsche, M.A. Dosage-dependent non-linear effect of L-dopa on human motor cortex plasticity. J. Physiol. (Lond.) 588, 3415–3424 (2010).

    Article  CAS  Google Scholar 

  62. Ridding, M.C. & Ziemann, U. Determinants of the induction of cortical plasticity by non-invasive brain stimulation in healthy subjects. J. Physiol. (Lond.) 588, 2291–2304 (2010).

    Article  CAS  Google Scholar 

  63. Plewnia, C. et al. Effects of transcranial direct current stimulation (tDCS) on executive functions: Influence of COMT Val/Met polymorphism. Cortex doi:10.1016/j.cortex.2012.11.002 (15 November 2012).

  64. Bikson, M., Rahman, A. & Datta, A. Computational models of transcranial direct current stimulation. Clin. EEG Neurosci. 43, 176–183 (2012).

    Article  PubMed  Google Scholar 

  65. Bullmore, E. & Sporns, O. The economy of brain network organization. Nat. Rev. Neurosci. 13, 336–349 (2012).

    Article  CAS  PubMed  Google Scholar 

  66. Salinas, E. & Sejnowski, T.J. Correlated neuronal activity and the flow of neural information. Nat. Rev. Neurosci. 2, 539–550 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Thut, G. et al. Rhythmic TMS causes local entrainment of natural oscillatory signatures. Curr. Biol. 21, 1176–1185 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Shafi, M.M., Westover, M.B., Fox, M.D. & Pascual-Leone, A. Exploration and modulation of brain network interactions with noninvasive brain stimulation in combination with neuroimaging. Eur. J. Neurosci. 35, 805–825 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Bastos, A.M. et al. Canonical microcircuits for predictive coding. Neuron 76, 695–711 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yuste, R. Origin and classification of neocortical interneurons. Neuron 48, 524–527 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Ni, Z., Muller-Dahlhaus, F., Chen, R. & Ziemann, U. Triple-pulse TMS to study interactions between neural circuits in human cortex. Brain Stimul. 4, 281–293 (2011).

    Article  PubMed  Google Scholar 

  72. Civardi, C., Cantello, R., Asselman, P. & Rothwell, J.C. Transcranial magnetic stimulation can be used to test connections to primary motor areas from frontal and medial cortex in humans. Neuroimage 14, 1444–1453 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Bestmann, S. et al. Mapping causal interregional influences with concurrent TMS-fMRI. Exp. Brain Res. 191, 383–402 (2008).

    Article  PubMed  Google Scholar 

  74. Davare, M., Lemon, R. & Olivier, E. Selective modulation of interactions between ventral premotor cortex and primary motor cortex during precision grasping in humans. J. Physiol. (Lond.) 586, 2735–2742 (2008).

    Article  CAS  Google Scholar 

  75. O'Shea, J., Sebastian, C., Boorman, E.D., Johansen-Berg, H. & Rushworth, M.F. Functional specificity of human premotor-motor cortical interactions during action selection. Eur. J. Neurosci. 26, 2085–2095 (2007).

    Article  PubMed  Google Scholar 

  76. Mars, R.B. et al. Short-latency influence of medial frontal cortex on primary motor cortex during action selection under conflict. J. Neurosci. 29, 6926–6931 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hasan, A. et al. Muscle and timing-specific functional connectivity between the dorsolateral prefrontal cortex and the primary motor cortex. J. Cogn. Neurosci. 25, 558–570 (2013).

    Article  PubMed  Google Scholar 

  78. Koch, G. et al. TMS activation of interhemispheric pathways between the posterior parietal cortex and the contralateral motor cortex. J. Physiol. (Lond.) 587, 4281–4292 (2009).

    Article  CAS  Google Scholar 

  79. Daskalakis, Z.J. et al. Exploring the connectivity between the cerebellum and motor cortex in humans. J. Physiol. (Lond.) 557, 689–700 (2004).

    Article  CAS  Google Scholar 

  80. Avenanti, A., Annella, L., Candidi, M., Urgesi, C. & Aglioti, S.M. Compensatory plasticity in the action observation network: virtual lesions of STS enhance anticipatory simulation of seen actions. Cereb. Cortex 23, 570–580 (2013).

    Article  PubMed  Google Scholar 

  81. Avenanti, A., Bolognini, N., Maravita, A. & Aglioti, S.M. Somatic and motor components of action simulation. Curr. Biol. 17, 2129–2135 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Paus, T. Inferring causality in brain images: a perturbation approach. Phil. Trans. R. Soc. Lond. B 360, 1109–1114 (2005).

    Article  Google Scholar 

  83. Polanía, R., Nitsche, M.A. & Paulus, W. Modulating functional connectivity patterns and topological functional organization of the human brain with transcranial direct current stimulation. Hum. Brain Mapp. 32, 1236–1249 (2011).

    Article  PubMed  Google Scholar 

  84. Chanes, L., Quentin, R., Tallon-Baudry, C. & Valero-Cabre, A. Causal frequency-specific contributions of frontal spatiotemporal patterns induced by non-invasive neurostimulation to human visual performance. J. Neurosci. 33, 5000–5005 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Romei, V., Driver, J., Schyns, P.G. & Thut, G. Rhythmic TMS over parietal cortex links distinct brain frequencies to global versus local visual processing. Curr. Biol. 21, 334–337 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Polanía, R., Nitsche, M.A., Korman, C., Batsikadze, G. & Paulus, W. The importance of timing in segregated theta phase-coupling for cognitive performance. Curr. Biol. 22, 1314–1318 (2012).

    Article  CAS  PubMed  Google Scholar 

  87. Roth, Y., Amir, A., Levkovitz, Y. & Zangen, A. Three-dimensional distribution of the electric field induced in the brain by transcranial magnetic stimulation using figure-8 and deep H-coils. J. Clin. Neurophysiol. 24, 31–38 (2007).

    Article  PubMed  Google Scholar 

  88. Rossi, S. et al. A real electro-magnetic placebo (REMP) device for sham transcranial magnetic stimulation (TMS). Clin. Neurophysiol. 118, 709–716 (2007).

    Article  PubMed  Google Scholar 

  89. Kuo, M.F. & Nitsche, M.A. Effects of transcranial electrical stimulation on cognition. Clin. EEG Neurosci. 43, 192–199 (2012).

    Article  PubMed  Google Scholar 

  90. Moliadze, V., Antal, A. & Paulus, W. Boosting brain excitability by transcranial high frequency stimulation in the ripple range. J. Physiol. (Lond.) 588, 4891–4904 (2010).

    Article  CAS  Google Scholar 

  91. Fertonani, A., Pirulli, C. & Miniussi, C. Random noise stimulation improves neuroplasticity in perceptual learning. J. Neurosci. 31, 15416–15423 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Groppa, S. et al. The human dorsal premotor cortex facilitates the excitability of ipsilateral primary motor cortex via a short latency cortico-cortical route. Hum. Brain Mapp. 33, 419–430 (2012).

    Article  PubMed  Google Scholar 

  93. Cohen, D. & Cuffin, B.N. Developing a more focal magnetic stimulator. Part I: some basic principles. J. Clin. Neurophysiol. 8, 102–111 (1991).

    Article  CAS  PubMed  Google Scholar 

  94. Deng, Z.D., Lisanby, S.H. & Peterchev, A.V. Electric field depth-focality tradeoff in transcranial magnetic stimulation: simulation comparison of 50 coil designs. Brain Stimul. 6, 1–13 (2013).

    Article  PubMed  Google Scholar 

  95. Wagner, T., Rushmore, J., Eden, U. & Valero-Cabre, A. Biophysical foundations underlying TMS: setting the stage for an effective use of neurostimulation in the cognitive neurosciences. Cortex 45, 1025–1034 (2009).

    Article  PubMed  Google Scholar 

  96. Nitsche, M.A. et al. Shaping the effects of transcranial direct current stimulation of the human motor cortex. J. Neurophysiol. 97, 3109–3117 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Datta, A. et al. Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad. Brain Stimul. 2, 201–207 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Dugué, L., Marque, P. & VanRullen, R. The phase of ongoing oscillations mediates the causal relation between brain excitation and visual perception. J. Neurosci. 31, 11889–11893 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Cattaneo, L., Sandrini, M. & Schwarzbach, J. State-dependent TMS reveals a hierarchical representation of observed acts in the temporal, parietal, and premotor cortices. Cereb. Cortex 20, 2252–2258 (2010).

    Article  PubMed  Google Scholar 

  100. Silvanto, J., Muggleton, N. & Walsh, V. State-dependency in brain stimulation studies of perception and cognition. Trends Cogn. Sci. 12, 447–454 (2008).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S.-L. Liew for suggestions. This work was supported by the Intramural Research Program of the US National Institute of Neurological Disorders and Stroke (NINDS; US National Institutes of Health) and by funding from US Department of Defense in the Center for Neuroscience and Regenerative Medicine to M.S. and E.R.B. N.C. was supported by an NINDS Ruth L. Kirschstein National Research Service Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo G Cohen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dayan, E., Censor, N., Buch, E. et al. Noninvasive brain stimulation: from physiology to network dynamics and back. Nat Neurosci 16, 838–844 (2013). https://doi.org/10.1038/nn.3422

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3422

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing